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Accurate measurement of income and consumption is essential for understanding 
socioeconomic disparities and informing effective policy interventions. However, survey 
data often lack comprehensive income or consumption data. Researchers typically employ 
asset-based indices or survey-to-survey imputation techniques to address this limitation. 
While these methods provide valuable insights, they can introduce biases, mainly 
imputations, when the analysis involves covariates not used in the prediction process. This 
paper proposes a novel imputation methodology that aims to mitigate these biases. Our 
approach focuses on preserving individuals’ relative positions within the income distribution 
while introducing variance. This ensures that the underlying rank order of individuals is 
maintained, addressing a common shortcoming of existing imputation techniques. Through 
rigorous validation and comparison, we demonstrate the robustness and effectiveness of our 
proposed method using the ENIGH survey in Mexico. To illustrate one practical application 
of our approach, we analyze inequality of opportunity, imputing income from the ENIGH 
into the ESRU-EMOVI survey. Our findings underscore the importance of carefully 
considering imputation methods in socioeconomic research. We demonstrate that traditional 
imputation procedures can lead to downward biased estimates of inequality of opportunity 
compared to our proposed method. 
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Introduction

A key challenge to distributional analyses in developing countries is that information on

income and/or consumption is either completely unavailable or not present in surveys. In

the first case, that of complete lack of information about income or consumption, alternatives

such as household asset indices have been developed to fill that gap (Filmer and Pritchett

2001; Filmer and Scott 2012; Poirier et al. 2020). In the second case, several imputation

methods have been developed to use auxiliary information to reconstruct the distribution of

income or consumption implicit in surveys that lack information about such variables (Dang

2021).

Among the imputation methods developed, a substantial part of the literature has focused

on developing regression-based imputations. These methods have their origins in the seminal

contribution of Elbers et al. (2003) with the Small Area Estimation (SAE) procedure and

can be broadly divided into two groups (Corral et al. 2022).

Design-based methods rely on the sampling design and survey weights to produce

direct or indirect estimates for small areas without making assumptions about the under-

lying population distribution (Lehtonen and Veijanen 2009; Pfe↵ermann 2013). In political

science, multilevel regression and post-stratification (MRP) has been widely used to obtain

reliable percentages of subnational point estimates from nationally representative surveys

(Park et al. 2017; Kiewiet de Jonge et al. 2018); or to produce accurate estimates from

non-representative surveys (Wang et al. 2015; Downes et al. 2018). The idea is to estimate

a multilevel model to predict an outcome and then weight the predictions based on the

observed frequencies of a subgroup taken from the census in a post-stratification manner.

Model-based methods assume a statistical model that relates the variable of interest

to auxiliary variables and accounts for random variation between and within small areas in

a two-sample two-stage (TSTS) manner. A commonly used approach is the Random E↵ects

Linear Model (Elbers et al. 2003; Pfe↵ermann 2013). Following the model proposed by

Elbers et al. (2003), these methods have been applied to the analysis of poverty dynamics

through synthetic panels (Dang and Lanjouw 2023a), the evolution of poverty in contexts

where there is no data across time (Dang and Lanjouw 2023b; Sinha Roy and Weide 2023)
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and poverty mapping (Elbers et al. 2003).

Three key assumptions must be met for model-based methods to produce reliable im-

putations. i) The two surveys have the same set of questions that explain our outcome of

interest. ii) The functional form, specifically the coe�cients, must be stable and consistent

across surveys (or over time). iii) The available predictors are su�ciently correlated with

our outcome.

Predictions of income and consumption typically concentrate around the conditional

expected mean, often exhibiting lower variance than observed data due to the uncertainty

introduced by the model’s error term. This can lead to bias when estimating inequality and

poverty measures. The downward bias arises for inequality measures because the predicted

distribution displays lower variance than the actual distribution. For poverty measures, bias

can occur if the predicted values cluster above or below the poverty threshold, resulting in

a downward or upward bias.

Several techniques have been developed to address the challenge of preserving variance

when imputing missing values. Two widely used methods for managing item non-response

in surveys are Hot Deck imputation and Predictive Mean Matching (PMM) (Campion and

Rubin 1989). Hot Deck imputation addresses missing values by copying data from a similar,

fully observed case. PMM extends this approach by using a statistical model to predict

missing values, identifying similar cases based on these predictions, and randomly selecting

a donor to impute the missing information.

Hot Deck imputation and PMM are generally e↵ective for handling item non-response,

especially when the missing data is at random, as they help preserve the observed mean and

variance (Suárez–Arbesú et al. 2024). However, their e↵ectiveness diminishes significantly

when entire variables are missing for a subset of observations (unit non-response) where the

randomness of the missing values does not hold.

When a variable of interest is missing from a survey, a two-sample two-stage procedure

is often employed. In the first stage, a model is estimated using data from one sample and

then used to predict values in a second sample with the same set of covariates (model-based).

The second stage involves analysing the second sample using the predicted values.

In poverty dynamics, for example, cross-sectional data do not allow individuals to be
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tracked over time to estimate the probability of moving in and out of poverty. Researchers

address this using the TSTS approach, first estimating a model for income in the second

latter survey and then predicting income in the first survey using the model to assess the

probability of individuals moving into or out of poverty in a pseudo panel manner (Dang and

Lanjouw 2023b; Sinha Roy and Weide 2023). In the context of intergenerational mobility,

most lower-income countries lack surveys linking parental income with their o↵spring, making

it challenging to estimate intergenerational elasticities (Björklund and Jäntti 1997; Bloise et

al. 2021). In these cases, the TSTS approach is commonly used to predict parental income

in a survey, allowing for the estimation of intergenerational mobility.

To more accurately reflect variance, inequality, and poverty measures, a random error

drawn from the empirical distribution of the model is added to each predicted value (McKen-

zie 2005; Dang and Lanjouw 2023a,b). This approach helps recover variance lost during

estimation by incorporating the uncertainty associated with the error term. The process is

repeated using a bootstrap approach (Rodas et al. 2021), which enables the calculation of a

mean and a confidence interval for key variables of interest, such as the Gini coe�cient and

poverty rates, this procedure is typically referred to as the Multiple Imputation Procedure

(MIP).

The Problem

Often, the analysis in the second stage requires information not used in the imputation

process– in other words, external covariates– which are used in the second stage after the

imputation. When imputing income (or consumption) y from one survey into another, in

the first stage, we model y as a function of available predictors X, such that y = f(X) + ".

Predicting y and incorporating variance through the error term results in ŷ = f̂(X) + "̃,

where "̃ is a random error drawn from the empirical distribution of the model’s residuals. The

second stage is assessed by examining cov(y, Z), where Z represents covariates of interest

that are not observed in the source survey and, therefore, not included in X (Z 62 X). The

true relationship can be expressed as:

cov(y, Z) = cov(ŷ, Z) + cov("̂, Z)
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Where the error terms in the first stage are highly likely correlated with Z (cov("̂, Z) 6= 0).

However, since "̃ is a random error drawn from the model, it is constructed to be orthogonal

to Z due to its random nature. Thus, we have cov("̃, Z) = 0, which reduces the true

relationship between y and Z as the second part of the relation is lost in the imputation

process. This results in an underestimation of the impact of covariates on the outcome y,

e↵ectively downward biasing our estimations.

For the analysis in the second stage, we need to predict y in such a way that:

cov(y, Z) = cov(ŷ, Z)

This equality holds when the error term ✏̂ is purely random and uncorrelated with z,

meaning it does not a↵ect the covariance structure in the second stage. Therefore, we aim

to ensure that the imputation process renders the error term irrelevant for the relationship

between y and Z. One way to formalise this is to ensure that the correlation between y and

its imputed counterpart ŷ is close to 1, signifying that ŷ closely approximates y.

Considering the Spearman rank correlation, which measures the rank-order correlation

between y and ŷ, we can look at the association between the predicted and actual values.

Rather than focusing on the exact values, the Spearman correlation compares their ranks,

which allows us to ignore variance di↵erences that may arise due to the random error term.

By ranking the data, we focus on the monotonic relationship between y and ŷ as:

⇢y,ŷ = 1� 6
P

(R(yi)�R(ŷi))2

n(n2 � 1)

where R(yi) and R(ŷi) denote the ranks of yi and ŷi respectively. The term
P

(R(yi)�R(ŷi))2

captures the degree of rank mismatch between yandŷ allowing for di↵erences in the variance

of both distributions stemming from a truly random error term. As this mismatch diminishes,

the rank correlation approaches 1.

If we express yi as ŷi+ ✏̂i where ✏̂i represents the residual error term from the imputation
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model, the Spearman correlation becomes:

⇢y,ŷ = 1� 6
P

(R(ŷi + ✏̂i)�R(ŷi))2

n(n2 � 1)

where R(ŷi + ✏̂i) � R(ŷi) reflects the distortion in ranks due to the error term. As this

di↵erence approaches 0 (i.e., as the rank di↵erence induced by the error term vanishes),

the Spearman correlation approaches 1. This implies that the imputed values ŷi become a

near-perfect rank-preserving transformation of the actual values yi while still allowing for

the variance to di↵er between y and ŷ when the error term is truly random.

Consequently, the extent to which we can preserve the rank in our predictions is directly

related to the bias introduced in our second-stage estimates. The preservation of rank ensures

that the relationship between y and ŷ remains robust, thereby minimising any distortion in

the covariance estimates concerning the external covariates Z.

Given that the prediction may inherently involve a variance loss due to a truly random

error term, our primary objective shifts to matching the observed variance. By achieving

this, we can confidently assert that cov(y, Z) ⇡ cov(ŷ, Z), thereby enhancing the reliability

of our second-stage analyses.

This paper proposes to address this problem by imputing income (or consumption) using

a novel methodology based on a combination of model and design-based approaches. We

provide validations to our approach by first applying it to two surveys where income is

present. We impute income from the ENIGH 2016 to the ENIGH 2018 and vice versa to

confirm the validity of the three assumptions. The results confirm that assumptions i, ii and

iii are met.

We apply a log-linear specification for prediction– the model-based part of our procedure–

as proposed by Elbers et al. (2003), McKenzie (2005), Ferreira, Gignoux, and Aran (2011),

and Dang and Lanjouw (2023b). We then assess the bias introduced in the estimation process

by comparing our predictions with the observed data across various population subgroups.

To correct these biases, we adjust our predictions– the design-based part– similar to how

post-stratification is used in MRP.

We evaluate four di↵erent imputations for predicting income: i) a simple prediction
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without variance adjustment; ii) a cluster-specific (CS) adjustment, which accounts for the

mean of each specific cluster; iii) a cluster-rank (CR) adjustment, which adjusts the mean

at each percentile rank within each cluster; and iv) a final adjustment that combines the CS

and CR adjustments using a convex combination of both approaches.

The original imputation predicts a Gini coe�cient more than 10 points below the observed

values for both surveys, consistent with the findings of Vélez-Grajales et al. (2019) who

impute household income from the ENIGH 2010 into the ESRU-EMOVI 2011 without adding

any variance. The first adjustment (CS) o↵ers a slight improvement in the Gini coe�cient

estimation, with its main advantage being the reduction of RMSE by adjusting for cluster

means. In contrast, the second adjustment (CR) incorporates variance and overestimates

the Gini coe�cient in both surveys, increasing the error in our predicted income. The linear

combination of the CS and CR adjustments significantly improves the estimation of income

distribution and inequality measures. This enhancement is evident in a Gini coe�cient that

closely aligns with the one observed in the ENIGH 2016 and 2018 survey estimates and in

the improved accuracy of the observed distribution of household income.

Lastly, in a practical exercise, we impute household income from the ENIGH 2016 into

the ESRU-EMOVI 2017 survey and adjust our predictions using imputation method iv.

We compare inequality of opportunity (IOp) estimates using our imputed measure, the

multiple imputation procedure, and an asset-based index. In this example, circumstances–

our external covariates– are not observed in the source survey, therefore it works as a perfect

example to demonstrate our methodology..

The two economic well-being measures– the asset-based index and our imputation– show

a positive correlation of 0.45. Our adjustment yields a Gini coe�cient of 0.51, significantly

higher than that reported by Vélez-Grajales et al. (2019). The multiple imputation method

produces a Gini coe�cient of 0.47, closest to the ENIGH observations.

IOp estimates using the asset index and the multiple imputation method show a reduction

of more than 10 points compared to our adjusted measure. The decrease in IOp when using

the asset index is attributed to its closer relationship with consumption (Filmer and Scott

2012), which tends to be less volatile than income. The reduction in IOp when applying

the multiple imputation method is likely due to the systematic weakening of the association
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between circumstances not included in the imputation procedure and outcomes, suggesting

that the random error term introduces a downward bias.

The rest of the article is structured as follows: Section 1 presents the framework on which

we build our imputation approach; Section 2 discusses the data and the transformations

made; Section 3 validates our method, followed by robustness checks in Section 4; In Section

5 we estimate IOp using the ESRU-EMOVI 2017 and our imputed measure; Finally, Section

6 concludes.

1 Methods

Consider two samples drawn from the same population, each from di↵erent surveys. The first

survey, termed the ”source survey” (denoted by superscript 1), includes income information

but lacks data on covariates of interest, such as parental background. The second survey

termed the ”destination survey” (denoted by superscript 2), contains information on said

covariates but does not include income data. Both surveys share a common set of predictors

X.

Let y denote income or consumption for each observation i. Our objective is to impute

y from the source survey (1) to the destination survey (2) using a model of the form:

y
1
i
= f

1(X1
i
) + "

1
i

(1)

where y is modelled as a function f(⇤) of covariates X, which have predictive power over y

and are specific to each observation. The error term " is assumed to be normally distributed

with a mean of 0.

Note that f(⇤) is not intended to capture the e↵ect of X on y, but rather to approximate

(or predict) y as closely as possible using observable factors. Therefore, it is possible to

specify f(⇤) as a general function to be approximated. Once we have approximated our

functional form, we estimate our predicted y in the destination survey as

ŷ
2
i
= f̂

1(X2
i
) (2)
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The variance of the predicted values will typically be less than the variance of the true

values due to the inherent uncertainty and imprecision introduced during the prediction

process associated with the error term "i. This leads to a prediction that concentrates values

around the conditional expected mean, implying a downward bias in poverty measures when

predictions are concentrated above the poverty threshold and an upward bias when they are

concentrated below it. Concentrating predictions will, by definition, lead to a reduction in

inequality measures.

To recover variance, we propose imputing data from the source survey to the destination

survey using a regression model (model-based) and employing adjustment ratios based on the

empirical distribution of the source survey (design-based). Our imputation process consists

of the following five steps:

1. Adjusting Survey Weights: We adjust the source survey weights to achieve a similar

representativeness to that observed in the destination survey (Cowell et al. 2018).

Following DiNardo et al. (1996), we use a semi-parametric decomposition method to

estimate the proportion of the di↵erence between the source and destination surveys

due to di↵erences in the distribution of characteristics.

Using a logistic regression, we estimate the probability ⇡i that observation i with

predictors Xi in the source survey is present in the destination survey. We adjust

the source survey weights by multiplying them by the estimated probability w
⇤
i
=

(wi
N
⇤⇡i)⇤N , where wi is the original weight and N is the total number of observations.1

Thus, observations highly likely to be in both surveys retain a weight close to their

original weight, while those highly likely not to be in the destination survey have

smaller weights.

These weights w⇤ are used in step 3 of our procedure to estimate weighted means.

2. Estimating f
1(⇤): We estimate Equation 1 by using a log-linear specification following

Elbers et al. (2003), McKenzie (2005), Ferreira, Gignoux, and Aran (2011), Dang and

1We normalise the weights w⇤ so that the probabilities sum up to 1.
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Lanjouw (2023a,b), and Sinha Roy and Weide (2023):

log(y1
i
) = ↵

1 +X
1
i
�
1 + "

1
i

(3)

We then predict y on the source survey as ŷi = exp(↵̂ + Xi�̂). If we assume "i ⇠

N (0, �2) and log(Y ) ⇠ N (µ, �2
y
), it is possible to use the smearing retransformation

exp(f̂(Xi)+
�̂
2

2 ) to predict ŷic (Duan 1983). We do not use this to follow the literature

on imputation as closely as possible (see for example: Elbers et al. 2003; McKenzie

2005; Ferreira, Gignoux, and Aran 2011; Dang and Lanjouw 2023a; Sinha Roy and

Weide 2023). An alternative to this is presented in the next step.

3. Design Base Adjustment: We categorise the population into clusters c based on

subgroups of interest. We use regional clusters in this example, although this method

can also be applied to other classifications.

We account for both within-cluster and between-cluster e↵ects to evaluate our model.

We do this by estimating two sources of bias in our predictions. For each cluster c, we

measure the deviation of our estimates from the actual data using the cluster-specific

ratio:

CS
c

ratio
=

µ
1
c

µ̂1
c

(4)

This metric quantifies our model’s average overestimation or underestimation of the

true value for each cluster. Given that our prediction comes from a log-linear specifi-

cation and is then rescaled, the cluster-specific ratio adjusts for the di↵erence between

the mean of the logarithm and the logarithm of the mean in a similar manner to the

smearing re-transformation without the need to assume normally distributed errors

within each cluster. For instance, if the predicted mean for a cluster is higher than the

actual survey mean, the cluster-specific ratio will be less than one, indicating that the

predictions for that cluster in the destination survey should be reduced.

Beyond matching the cluster means, we aim to match the shape of their specific dis-

tributions. Let Fc(y) represent the observed cumulative density function of cluster c,

and F
�1
c

(q) denote the corresponding quantile function. For each quantile q, we assess
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the deviation between the observed and predicted values by calculating:

F
�1
c

(q1)

F̂�1
c

(q1)
(5)

To approximate this, we sort individuals into percentile ranks based on observed y and

evaluate the accuracy of our predictions for each rank r within each cluster c using the

cluster-rank ratio:

CR
cr

ratio
=

µ
r1
c

µ̂r1
c

(6)

This ratio indicates the average degree of over- or underestimation of the target vari-

able by our model for each rank within each cluster. Since we approximate this by

discretizing quantiles into percentile ranks, in the limit, we have that:

lim
r!q

CR
cr

ratio
=

µ
r1
c

µ̂r1
c

=
y
1
c

ŷ1
c

=
F

�1
c

(q1)

F̂�1
c

(q1)
(7)

We estimate the cluster and rank averages using the adjusted weights w⇤ from step 1

for both the observed µ and the predicted µ̂ values.

4. Predicting over the destination: We apply our model to predict y on the des-

tination survey following Equation 2 as ŷ
2
h
= exp(↵̂1 + X

2
h
�̂
1). Within each cluster,

individuals are ranked according to their predicted outcomes (ŷ2
hcr

).

5. Adjusting predictions: We then adjust our predictions for the destination survey

using the ratios calculated in the previous steps.

In the context of design-based Small Area Estimations, it is common to employ a

composite estimate as ˆY COM
n

= �Ŷn

syn

+ (1 � �)Ŷn

s�r

, where the mean of area n is

estimated as a linear combination of a synthetic (syn) estimator and a survey regres-

sion (s � r) (Pfe↵ermann 2013; Schaible 2014). The synthetic estimator refers to an

estimation obtained from a linear regression of the area mean on the available mean

of the covariates and tends to have large bias. The survey regression estimator is

the probability-weighted estimator of the mean on the covariates using the Horvitz-

Thompson estimators to reduce bias, but incorporating survey weights increases the
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variance of the estimation. The convex combination of both serves as a compromise

between large bias and large variance. � is selected to minimise the MSE of the area

means.

We adapt this methodology and estimate a composite prediction as a compromise

between reducing bias (CS) in our prediction and incorporating variance (CR) to match

our inequality measure as:

ỹhcr = �(CS
c

ratio
⇤ ŷhcr) + (1� �)(CR

cr

ratio
⇤ ŷhcr); 0 < � < 1 (8)

where the adjustment ratios are specific to each rank within each cluster, by combining

both ratios in a convex manner, we balance these e↵ects. The cluster-specific ratio helps

correct the mean values at the cluster level, while the within-cluster ratio fine-tunes

the distribution within each cluster.

Using a cross-validation procedure, the algorithm selects � to minimise the deviation

of our preferred inequality or poverty measure from an out-of-bag sample of the source

survey. Unlike conventional approaches that minimise Mean Squared Error (MSE), we

prioritise minimising the deviation from our inequality measure to incorporate some

variance in the estimation process, acknowledging that a degree of noise may improve

the accuracy of the overall distribution.

To select the optimal �, we divide our source survey into a training sample to estimate

the linear regression and the ratios. Then, for di↵erent values of � we estimate the

deviation between the observed and predicted Gini over the remaining source survey

that was not used to estimate the model and ratios. To prevent over-fitting, we opt

for a �, one standard deviation away from the value minimising the deviation of our

inequality measure (Hastie et al. 2009; Chen and Yang 2021).

For this procedure to produce reliable predictions, we assume that the set of predictors

shared across surveys is the same and measures the same concept. Second, we assume

stability between surveys, meaning that f(⇤) holds between the two surveys. We assume

that X predicts y, but this prediction may have significantly less variance than the original
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variable. We correct for systematic errors in the prediction using the ratios estimated with

the source survey, which approximate the observed distribution.

To estimate confidence intervals for the Gini coe�cient, we estimate R bootstrapped

estimates of the Gini. Starting from step 2, we draw R bootstrapped samples from our

source survey and estimate equation 3. We evaluate our model and calculate the bias ratios

based on these samples R times. Finally, we predict over the entire target survey at each

draw and adjust the predictions accordingly.

2 Data & Setting

To validate our methodology, we take advantage of the periodicity of the Mexican National

Survey on Household Income and Spending (ENIGH),2 which is conducted every two years

by the National Institute for Statistics Geography and Information (INEGI). We impute

income from the ENIGH 2016 into the ENIGH 2018 and vice versa. This setting allows us

to examine the performance of our methodology in an environment where we have income

information available and over which the model was not approximated to conduct several

robustness tests.

Lastly, we apply our methodology to the ESRU Survey on Social Mobility in Mexico

2017 (ESRU-EMOVI), which does not contain any income information, and is conducted by

the Espinosa Yglesias Research Centre (CEEY for its acronym in Spanish),3 and estimate

inequality of opportunity comparing our approach to an asset-based index and the multiple

imputation procedure.

2.1 Data

The ENIGH survey is representative of men and women at the national and state levels

in urban and rural areas. It is conducted biennially and collects information about the

household’s composition, income, and spending. The ESRU-EMOVI is representative of men

2Encuesta Nacional de Ingresos y Gastos del Hogar.
3ESRU-EMOVI.
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and women at the national level and for five big regions of Mexico.4 It collects information

about the current household and that of the respondent when she was 14. The recollection of

childhood information allows for intergenerational analysis such as inequality of opportunity.

However, the ESRU-EMOVI does not recollect income information.

Our analysis centres on household disposable income (HHI), which we assess at the per-

capita level by dividing by household size. To account for inflation, we adjust HHI using

the Consumer Price Index (CPI) provided by the World Bank. Specifically, we rebase the

CPI to a value of 1 in 2016. Summary statistics of HHI can be found in Table 1 and the

distribution of both measures in Figure 1.

Table 1: Summary Statistics

ENIGH 2016 ENIGH 2018 ESRU-EMOVI 2017

HHI 14,934.79 (23,349.11) 16,863.13 (22,756.53) -
HHI* 14,934.79 (23,349.11) 15,159.54 (20,457.55) -
log HHI* 9.19 (0.83) 9.22 (0.82) -
Gini 0.492 (0.004) 0.484 (0.004)
Deflator 1 1.11 1.06

Notes: Means are estimated using the original survey weights. HHI represents per-capita dispos-

able household income. ⇤ Dentoes CPI adjusted to represent real terms. Standard deviations are

presented in parentheses.

Mean income increased by around 13% in nominal terms between 2016 and 2018. In real

terms, however, this amounts to an increase of less than 2%. Inequality, as measured through

the Gini coe�cient, is relatively stable between the two years, with both values being inside

the 95% confidence interval of the other year at around 0.49.

Variables common in the ENIGH 2016, ENIGH 2018, and ESRU-EMOVI 2017 datasets

are our predictors to ensure the validity of assumption i. These include household assets,

composition, social security status, characteristics of the household head, and regional vari-

ables. For a detailed list of these variables, refer to Table 2.

4The regions are divided into North (Baja California, Coahuila, Chihuahua, Monterrey, Sonora, Tamauli-
pas), North-West (Baja California Sur, Sinaloa, Zacatecas, Nayarit, Durango), Center-West (Aguascalientes,
Colima, Jalisco, Michoacán, San Luis Potośı), South (Campeche, Chiapas, Guerrero, Oaxaca, Quintana Roo,
Tabasco, Veracruz, Yucatán), Center (Guanajuato, Hidalgo, Mexico, Morelos, Puebla, Queretaro, Tlaxcala),
and Mexico City.
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Figure 1: Distribution of HHI
(a) Nominal Income (b) Real Income
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Notes: Density distribution of logged per-capita HHI using survey weights. Panel (a) shows the

nominal values. Panel (b) shows real values. HHI is scaled using the World Banks CPI (2016 =

1).

The descriptive statistics of the predictors in the three samples suggest that they are

representative of the same population. Some variables, such as the percentage of households

where the floor material is other than cement or dirt, di↵er between ENIGH and ESRU-

EMOVI. To consider this, we correct the sample weights as explained in step 1 of the

methodology. Furthermore, to ensure that the estimated means accurately reflect the target

population, we align our cluster selection with the state level, as the ENIGH is representative

at this level. Since the ESRU-EMOVI is only representative at the regional level, we adjust

the clusters accordingly as a robustness check and in our final imputation exercise.

Setting

We test to see if assumption ii holds by accounting for di↵erent scenarios as done by New-

house et al. (2014). We impute forwards from 2016 to 2018 and backwards from 2018 to

2016. In each scenario, we approximate Equation 3 using a bootstrapped sample of the

source survey. We estimate our ratios over 80% of this source survey sample and select �

using the remaining 20%. Once this is done, we test how well our methodology is doing by

looking at the imputation in the full target survey.

We set R = 100 and estimate 100 bootstrapped Gini coe�cients. From these, we estimate

a mean expected value for the Gini coe�cient as well as 95% confidence intervals. Finally,

we average our predictions over the bootstrapped samples for a final imputation.
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Table 2: Variables Used as Predictors (Household Level)

ENIGH 2016 ENIGH 2018 ESRU-EMOVI 2017
Telephone 0.37 (0.46) 0.35 (0.45) 0.38 (0.49)
Cellphone 0.86 (0.35) 0.89 (0.32) 0.85 (0.36)
TV 0.48 (0.50) 0.43 (0.50) 0.50 (0.50)
Internet Connection 0.38 (0.46) 0.42 (0.48) 0.41 (0.49)
Water 0.74 (0.45) 0.75 (0.45) 0.77 (0.41)
Electricity 0.99 (0.12) 0.99 (0.13) 0.91 (0.27)
Gender (HH) 0.73 (0.43) 0.72 (0.44) 0.52 (0.49)
Car 0.45 (0.50) 0.45 (0.50) 0.58 (0.77)
Owns Property 0.69 (0.45) 0.68 (0.45) 0.58 (0.49)
Dirt Floor 0.03 (0.17) 0.03 (0.17) 0.03 (0.16)
Cement Floor 0.51 (0.50) 0.51 (0.50) 0.58 (0.50)
Other Floors 0.46 (0.49) 0.46 (0.49) 0.39 (0.49)
Share Men 0.49 (0.23) 0.49 (0.23) 0.50 (0.23)
Share Occupied 0.52 (0.28) 0.53 (0.28) 0.44 (0.28)
IMSS 0.39 (0.49) 0.39 (0.49) 0.38 (0.49)
IMSS Prospera 0.01 (0.08) 0.00 (0.05) 0.01 (0.11)
ISSSTE 0.02 (0.11) 0.02 (0.11) 0.05 (0.24)
Other (Social Security) 0.58 (0.49) 0.58 (0.49) 0.29 (0.44)
PEMEX (Social Security) 0.01 (0.09) 0.01 (0.09) 0.01 (0.08)
Prospera 0.18 (0.41) 0.18 (0.41) 0.13 (0.33)
Elderly 0.07 (0.27) 0.07 (0.26) 0.06 (0.24)
Big Town 0.51 (0.49) 0.49 (0.48) 0.09 (0.28)
Median Town 0.14 (0.34) 0.15 (0.33) 0.18 (0.38)
Small/Median Town 0.14 (0.34) 0.14 (0.34) 0.21 (0.40)
Small Town 0.21 (0.48) 0.23 (0.48) 0.52 (0.50)
No Education (HH) 0.06 (0.24) 0.05 (0.24) 0.03 (0.19)
Kindergarden (HH) 0.15 (0.37) 0.13 (0.36) 0.00 (0.04)
Primary School (HH) 0.21 (0.41) 0.20 (0.41) 0.24 (0.43)
Secondary School (HH) 0.30 (0.46) 0.30 (0.46) 0.31 (0.46)
High School (HH) 0.15 (0.34) 0.16 (0.35) 0.21 (0.40)
Graduate Degree (HH) 0.11 (0.29) 0.12 (0.30) 0.16 (0.35)
Postgraduate Degree (HH) 0.03 (0.13) 0.03 (0.13) 0.01 (0.11)
State of Residency X X X

Notes: Values correspond to the weighted mean in each survey. Standard deviations are presented

in parentheses. HH stands for the household head.
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3 Validation

We validate our methodology by applying it to the ENIGH 2016 and 2018. We first present

results for the forward imputation, estimating a model over the ENIGH 2016 and imputing

on the ENIGH 2018. We then present the results for the backward imputation. All results

in this section are estimated using a linear regression following the methodologies of Elbers

et al. (2003), McKenzie (2005), and Dang and Lanjouw (2023a). Future work remains to

optimise the procedure to incorporate predictions based on machine learning algorithms.

3.1 Forward Imputation

In the forward imputation setting, we employ the ENIGH 2016 as our source survey and the

ENIGH 2018 as the target survey. Initially, when applied to the source survey, our model

yields an out-of-sample R
2 of 0.53. The distribution of our error terms are shown in Figure

2. Panel (a) shows the original error term on the source survey, while Panel (b) shows the

distribution once the adjustment in step 5 is applied to the source survey.

Figure 2: Error Distribution - Forward Imputation
(a) Predicted (b) Adjusted
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Notes: Density distribution of error terms. Panel (a) shows the original error distribution. Panel

(b) shows the error distribution after applying the adjustment.

The ENIGH 2018 reveals a Gini coe�cient of 0.48. Our primary objective is to impute

household income (HHI) to mirror this inequality estimate. The outcomes of our imputed

income measure are presented in Table 3. We present results for one imputation of the

bootstrap replications to showcase what each adjustment is doing.

As anticipated, our predicted Gini coe�cient falls more than 12 basis points below the

observed value for 2018. While adjusting solely for between-cluster bias does reduce our
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Table 3: Results: Forward Imputation

Gini RMSE
Observed 0.484
Predicted 0.362 20,326
Adjusted (CS) 0.365 19,737
Adjusted (CR) 0.566 28,176
Adjusted 0.493 23,375

Notes: The Gini is computed using survey weights. RMSE is presented in real Mexican pesos

(y � ỹ).

estimation error, it does so marginally. The resultant Gini coe�cient remains notably lower

than the expected one, still trailing by around 12 points. Conversely, adjusting exclusively

for within-cluster bias exacerbates our prediction’s error, resulting in an overestimation of the

Gini coe�cient by 8 points. The composite estimate, with a larger error than the between-

cluster adjusted values, exhibits a smaller deviation than the within-cluster adjustment.

Correspondingly, the Gini coe�cient closely aligns, di↵ering by one point from the observed

value.

We use a bootstrap procedure to estimate confidence intervals and assess the variability

of our methodology. Table 3 presents these results. It is important to note that the values

in Table 3 and Table 4 di↵er because the first table displays results from a single bootstrap

iteration, while the second table reports the mean and standard errors derived from the full

bootstrap process.

Table 4: Confidence Intervals: Forward Imputation

Gini
Observed 0.484 (0.475, 0.493)
Adjusted 0.491 (0.471, 0.511)

Notes: Observed values are computed using survey weights following Horvitz and Thompson

(1952). We estimate confidence intervals by bootstrapping from step 2 in our methodology for

the adjusted value.

Despite our expected Gini coe�cient surpassing the observed value for 2018, it remains

within the confidence intervals of the observed Gini. Furthermore, our estimated Gini coef-

ficient exhibits a marginally higher variability than the observed counterpart. Nevertheless,

the confidence interval remains within a 5% error margin of the observed Gini coe�cient.
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Figure 3 shows the density estimations of our imputed value.

Figure 3: Distribution of Imputed HHI - Forward Imputation
(a) One Adjustment
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Notes: Density distribution of logged HHI using survey weights. Panel (a) shows the distribution

when imputing using the whole survey. Panel (b) shows the results of the bootstrapped imputa-

tion.

3.2 Backward Imputation

For the backward imputation, we employ the ENIGH 2018 as our source survey and the

ENIGH 2016 as the target survey. When applied to the source survey, our model yields an

out-of-sample R
2 of 0.53. Figure 4 shows the distribution of our error terms.

The ENIGH 2016 shows a Gini coe�cient of 0.49, slightly higher than the one observed

in 2018. The results of our imputation process are shown in Table 5.
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Figure 4: Error Distribution - Backward Imputation
(a) Predicted (b) Adjusted
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Notes: Density distribution of error terms. Panel (a) shows the original error distribution. Panel

(b) shows the error distribution after applying the adjustment.

Table 5: Results: Backward Imputation

Gini RMSE
Observed 0.492
Predicted 0.353 21,199
Adjusted (CS) 0.362 20,978
Adjusted (CR) 0.552 28,726
Adjusted 0.494 24,957

Notes: The Gini is computed using survey weights. RMSE is presented in real Mexican pesos (ỹ).

Similar to the forward imputation, our original prediction of the Gini is more than 13

points below the observed one for 2016. While adjusting for between-cluster bias reduces the

estimation error, the Gini coe�cient still remains more than 12 points below the observed

value. On the other hand, adjusting for within-cluster bias exacerbates the error in our

prediction, leading to an overestimation of the Gini coe�cient by more than 6 points. Despite

the composite estimate exhibiting a larger RMSE than the between-cluster adjusted values,

it shows a smaller deviation than the within-cluster adjustment. Consequently, the Gini

coe�cient closely aligns with the observed value.

We present confidence intervals estimated through the bootstrap procedure to estimate

the variability of our methodology. Table 6 shows the results.

In this setting, our imputation yields the observed value of the Gini on average. As in

the forward imputation, our estimated Gini coe�cient exhibits higher variability than the

observed counterpart. In this case, the confidence intervals are higher than the ones observed

in the forward imputation. Figure 5 shows the density estimations of our imputed value.
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Table 6: Confidence Intervals: Backward Imputation

Gini
Observed 0.492 (0.485, 0.500)
Adjusted 0.492 (0.468, 0.514)

Notes: Observed values are computed using survey weights following Horvitz and Thompson

(1952). We estimate confidence intervals by bootstrapping from step 2 in our methodology for

the adjusted value.

Figure 5: Distribution of Imputed HHI - Forward Imputation
(a) One Adjustment
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Notes: Density distribution of logged HHI using survey weights. Panel (a) shows the distribution

when imputing using the whole survey. Panel (b) shows the results of the bootstrapped imputa-

tion.
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4 Robustness Checks

We consider various scenarios to assess the robustness of our imputation methodology. We

recognise the similarity in the sampling designs of both ENIGH surveys. To address this,

we subset the ENIGH and compute confidence intervals across di↵erent sample sizes and

changing the cluster level.

A crucial aspect of imputation methods is maintaining consistency in income and con-

sumption profiles throughout the process. This means maintaining the relative position of

households in the conditional distribution. Our approach involves introducing variance to

the imputation by leveraging predicted individual positions at the cluster level.

To address this concern, we undertake two exercises. First, we analyse profiles by seg-

menting the population into quantile groups and comparing the distribution of covariates

across observed and predicted quantile groups. This analysis o↵ers insights into the align-

ment between the original and imputed profiles.

Additionally, we conduct a comparative analysis of the regression coe�cients derived

from the two ENIGH surveys, particularly emphasising their direction and magnitudes. This

comparative analysis further validates the stability assumption and reinforces the reliability

of our imputation methodology for assessing IOp.

Sample Size

To account for di↵erences in the sample of the target survey, we first subset the target survey

and estimate the di↵erence between the predicted and observed Gini coe�cients within this

subset. We perform 100 bootstrap iterations to ensure robustness at varying percentages of

the target survey. This involves increments of 10 per cent, ranging from 10 to 100 percent

coverage. Figure 6 shows the results.

Our results show a convergence trend. The average point estimate of the Gini coe�cient

tends to align more closely with the observed values for the backward imputation method.

However, as the sample size approaches 100%, both imputations converge towards the ob-

served values. This convergence is accompanied by a reduction in the confidence intervals
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Figure 6: Di↵erence in Ginis - Sample Size
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Notes: Points show the expected di↵erence between the observed and the estimated Gini co-

e�cients for di↵erent sample sizes of the target survey. Confidence intervals are derived using

bootstrapped replications from step 1 in our methodology.

and a tightening of the point estimates, reflecting increased precision.

Additionally, the forward imputation exhibits lower levels of volatility, particularly evi-

dent when the sample size nears 100%. This suggests higher stability in the forward impu-

tation method under such conditions.

Cluster Level

We modify our procedure to select clusters at the regional level as a further robustness

check to see how our methodology performs when changing the clusters. The results of this

adjustment are presented in Table 7.

Table 7: Regional Cluster Level

Forward Backward
Observed 0.484 (0.475, 0.493) 0.492 (0.485, 0.500)
Adjusted 0.491 (0.473, 0.507) 0.486 (0.444, 0.527)

Notes: Values are computed using survey weights following Horvitz and Thompson (1952). We

estimate confidence intervals by bootstrapping from step 2 in our methodology for the adjusted

value.

The outcomes derived from the regional cluster-level analysis are consistent with our

earlier findings. Both forward and backward imputation methods exhibit slightly higher
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variance in the imputed Gini coe�cients than the observed values.

In the case of forward imputation, the average Gini coe�cient remains identical to that

obtained when clustering was conducted at the state level. Conversely, with the backward

imputation, we observe a Gini coe�cient lower than the observed and previously predicted

values but still within the observed confidence intervals. Additionally, the confidence inter-

vals for the backward imputation are wider than those of the forward imputation, aligning

with our previous results.

Profile Compositions

A critical aspect of imputation in assessing income and consumption regarding external

covariates is preserving individuals’ relative positions based on their socioeconomic charac-

teristics. When imputing data from ENIGH to ENIGH, it is challenging to ascertain whether

the original ranking according to external covariates is maintained since these have the same

set of covariates. To address this, we select predictors closely linked to socioeconomic char-

acteristics and evaluate whether our imputation yields reliable estimates.

In particular, we include variables such as the presence of an elderly person in the house-

hold, home-ownership status, and the gender of the household head from our pool of pre-

dictors. Additionally, we incorporate the ability of at least one household member to speak

an indigenous language as an external socio-demographic characteristic, which was not used

during the imputation process.

We first divide the population into observed and predicted income quartiles and compare

the share of subgroups across the two to analyse if individuals’ relative is preserved. Figure

7 shows the results.

We observe consistent patterns across imputation profiles. Specifically, when examining

socioeconomic characteristics such as the ability to speak an indigenous language and the

presence of elderly individuals in the household, there is a clear downward trend across

income quartiles. As we move from lower to higher income quartiles, the prevalence of these

characteristics gradually decreases.

Beyond examining quartile composition, it is crucial that the imputation preserves indi-

viduals’ ranks within the income distribution. To further validate our approach, we analyse
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Figure 7: Household Income Profiles
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Notes: Observed percentages are estimated using survey weights. Adjusted percentages are esti-

mated from bootstrapped samples. We bootstrap from step 2 in our methodology.

the correlation between our imputed estimates and the observed values and compare it with

the correlation from a multiple imputation procedure incorporating an added error term.

This comparison allows us to assess whether our imputation method preserves the original

distribution’s structure more e↵ectively.

Figure 8 presents the estimates from regressing observed (log) income values against

the imputed ones and the results from regressing normalised ranks. Our findings indicate

a Spearman-rank correlation of 0.72 for our adjusted imputation, compared to 0.52 for the

multiple imputation method. These results suggest that adding the error term in the multiple

imputation process disrupts individuals’ positions within the conditional income distribution.

Stability

Finally, we check for the stability of our estimations by comparing the coe�cients derived

from both surveys. We aim to discern whether both surveys exhibit similar patterns in terms

of magnitude and direction. The results of this analysis are depicted in Figure 9.

We observe consistency across most of our predictors, with coe�cients displaying signif-

icant overlap. Even in cases where there is a lack of overlap, we find that the direction and

magnitude of the coe�cients remain similar between the two surveys.
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Figure 8: Household Income Correlation
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Notes: Results for the forward imputation, data points correspond to the ENIGH 2018. Panel

(a) shows the distribution of logged values across specifications. Panel (b) shows the results of a

rank-rank regression of imputed and observed household income. The dotted line represents the

45-degree line.

5 IOp in Mexico: Assets vs. Income

Finally, we apply our methodology to the ESRU-EMOVI 2017 and estimate inequality of

opportunity (IOp). We compare our results with those using the asset index approach

(Filmer and Pritchett 2001; Filmer and Scott 2012) and the multiple imputation approach

(Ferreira, Gignoux, and Aran 2011; Dang and Lanjouw 2023b).

Data

The ESRU-EMOVI collects information on the current household and the household of the

respondent at the age of 14. Recalling information from childhood allows for intergenera-

tional analysis. Respondents are asked about their parents’ education and occupation and

about the availability of assets in both households.

In the absence of direct income data, researchers often resort to approximating economic

well-being using an asset index, as shown in previous studies (e.g. Ferreira, Gignoux, and

Aran 2011; Torche 2015; Vélez-Grajales et al. 2019; Delajara et al. 2022; Plassot et al.

2022). Similarly, through factor analysis, we use this approach to construct an asset index

for the respondent’s current household. Specifically, we use Principal Component Analysis
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Figure 9: Stability
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Notes: Points show each predictor’s average point estimate of the OLS. Confidence intervals are

estimated using bootstrap from step 2 of our methodology.

(PCA) to derive socioeconomic well-being as

yh =
FX

f=1

af

✓
xfh � x̄f

sf

◆
(9)

where the F -dimensional vector of weights a is chosen to maximise the sample variance of y,

subject to the constraint
P

f
a
2
f
= 1. x̄f is the mean of the fth asset and sf is its standard

deviation. The details of the PCA can be found in Table 8, Figure 10 shows its distribution.
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Table 8: Household Asset Index

Mean
Standard
Deviation

Weight (af )

Plumbing 0.921 0.269 0.159
Stove 0.940 0.237 0.175
Electricity 0.987 0.111 0.055
TV 0.849 0.358 0.188
Fridge 0.925 0.263 0.196
Washing Machine 0.793 0.405 0.250
Landline 0.383 0.486 0.296
DVD Blueray 0.418 0.493 0.274
Microwave 0.521 0.500 0.307
Cable TV 0.523 0.500 0.264
Internet 0.428 0.495 0.340
Cellphone 0.178 0.383 0.261
Computer 0.324 0.468 0.318
Other Housing 0.047 0.212 0.124
Other Land 0.028 0.164 0.066
Automobile 0.097 0.296 0.202
Bank account 0.223 0.416 0.231
Credit Card 0.152 0.359 0.241
Premises 0.038 0.192 0.094
Working Parcels 0.074 0.262 0.099
Working Machinery 0.014 0.119 0.020
Working Animals 0.035 0.183 -0.010
Livestock 0.039 0.193 -0.031

Notes: The table shows the characteristics of the assets used to construct the asset index as in

Equation 9. The weights are derived using Principal Component Analysis.

Another common approach is the multiple imputation procedure (MIP) (McKenzie 2005;

Ferreira, Gignoux, and Aran 2011). In this method, we estimate Equation 3 from a bootstrap

sample drawn from our source survey. To account for variance, we predict household income

(HHI) for each household in the target survey as:

ŷh = exp(↵̂B +Xh ⇤ �̂B + "̃Bh) (10)

where ↵̂B and �̂B are specific to each bootstrap sample B, with "̃Bh representing an additional

error term randomly drawn from the empirical error distribution of the model. This proce-

dure is repeated R times, and the measure of IOp is taken as the average of the estimated
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Figure 10: Distribution of Asset Index
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Notes: Density distribution of the normalised asset index using survey weights. The index is

derived using PCA.

IOp values.

To assess the e↵ectiveness of our method, we compare it with the above approaches, using

100 bootstrap replicates to estimate confidence intervals. In contrast to multiple imputations,

a notable advantage of our procedure is the ability to obtain an average imputation. This

is illustrated in Panel (b) of Figures 3 and 5, facilitating a direct comparison between the

imputed measure and our asset index. Figure 11 provides insights into the relationship

between our asset index and the imputed measure of income, along with the distribution of

the average imputation derived from our methodology.

We observe a correlation of 0.45 between our imputed measure and the asset index,

indicating a positive association between the two. The association is weaker at the top

and bottom of the distribution, consistent with the notion that such asset indices cannot

distinguish the very poor from the very rich (Ferreira, Gignoux, and Aran 2011).

The positive correlation between the two measures suggests that although they are re-

lated, each measure captures a di↵erent aspect of economic well-being. These findings are

consistent with those of Filmer and Scott (2012) that the asset index is more closely related

to long-term consumption than household income.
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Figure 11: Asset Index and Imputation
(a) Correlation
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Notes: Distribution of our average imputed measure. Panel (a) shows its relationship to the

asset-based index. The red line is the association derived from a LOWESS regression. Panel (b)

shows the distribution of imputed HHI using survey weights.

Conceptual Framework and Estimation Strategy

The literature on IOp follows Roemer (1998) and defines outcome y of individual i to be

expressed by an additively separable function of e↵ort e and circumstances C specific to each

individual

yi = f(Ci, ei) (11)

the population can then be divided into k non-overlapping groups based on their circum-

stances and m tranches of e↵ort. We assume equality of opportunity (EOp) if there is no
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di↵erence in the expected outcome between groups (ex-ante) or within tranches (ex-post).

When considering a weak ex-ante criterion, we look at the mean of each specific type:

ŷi = µj 8j 2 [1, ..., k] (12)

Using the parametric approach, we follow Ferreira and Gignoux (2011) and estimate

Equation 11 through a linear regression. We use gender, ethnicity, region of birth, father’s

and mother’s education and parental occupation as circumstances:

yi = ↵ + Ci� (13)

To get a measure of IOp, we first predict our outcome to approximate Equation 12 and

then estimate the proportion of total inequality explained by circumstances as:

IOp =
Gini(ŷ)

Gini(y)
(14)

The circumstances chosen for this purpose are not exhaustive and will yield a lower bound

estimation of ex-ante IOp.

Results

We analyze the di↵erences in Inequality of Opportunity (IOp) across the three measures:

Asset Index, Predicted, Multiple Imputations, and Adjusted. Table 9 presents a summary

of our findings.

Table 9: Inequality Of Opportunity

Asset Index Prediction Multiple Imputations Adjustment
Total Inequality 0.220 (0.216, 0.224) 0.368 (0.363, 0.372) 0.477 (0.461, 0.493) 0.511 (0.475, 0.547)
Absolute IOp 0.107 (0.104, 0.110) 0.209 (0.204, 0.214) 0.209 (0.198, 0.221) 0.296 (0.274, 0.318)
Relative IOp 0.486 (0.473, 0.499) 0.569 (0.559, 0.579) 0.439 (0.414, 0.464) 0.580 (0.566, 0.593)

Notes: Point estimates are computed using survey weights. Confidence intervals are estimated

through bootstrap estimations. We bootstrap our source survey from step 2 in our methodology

for the prediction, multiple imputation, and adjusted measure. For the asset index, we only

bootstrap the sample from which we estimate IOp.

Total inequality varies significantly across the di↵erent measures. The Asset Index pro-
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duces a Gini coe�cient of 0.22, which is notably low for income measures. 5. The Predicted

measure, which does not include additional variance, shows a Gini coe�cient of 0.368, an

increase of more than 14 points compared to the Asset Index but still lower than the ob-

served values in both ENIGH 2016 and 2018. The Multiple Imputation method yields a

Gini coe�cient of 0.477, further increasing the inequality measure by more than 10 points

compared to the Predicted method. Lastly, the Adjusted imputation method results in the

highest Gini coe�cient of 0.511, a substantial rise of 15 points.

It is crucial to recognize that both the Multiple Imputation and Adjusted methods orig-

inate from the same initial forecast (column two of Table 9). Therefore, the observed di↵er-

ences in overall inequality and IOp are attributable to the distinct underlying assumptions

in each imputation methodology.

A closer examination of Relative IOp reveals significant di↵erences between the mea-

sures. The Asset Index and Predicted methods yield Relative IOp values of 0.486 and 0.569,

respectively, indicating a moderate level of inequality of opportunity relative to total in-

equality. However, the Multiple Imputation method produces a lower Relative IOp of 0.439,

suggesting that introducing random error during the imputation process reduces the extent

to which inequality can be attributed to opportunity-related factors.

In contrast, the Adjusted method results in a Relative IOp of 0.580. This di↵erence un-

derscores the impact of imputation techniques on measuring inequality of opportunity. The

Adjusted method’s ability to produce a higher Relative IOp suggests that it may more accu-

rately capture the relationship between socioeconomic circumstances and income, minimising

the attenuation e↵ect caused by random error in the Multiple Imputation approach.

Furthermore, the narrower confidence intervals observed in the Adjusted method for both

Absolute and Relative IOp indicate more stability and precision in these estimates compared

to the Multiple Imputation method. This further supports the Adjusted method as a more

reliable approach for measuring IOp, particularly when the goal is to preserve individuals’

rankings within the income distribution.

5The World Bank estimates a value of 0.232 for the Slovak Republic as the lowest Gini index.
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6 Conclusions

The lack of data on income and consumption in surveys poses significant challenges for

distributional analysis. Researchers typically employ two solutions to address this issue:

substituting these variables or reconstructing them within surveys.

The first approach often involves the use of asset-based indices. Our findings indicate

that these indices are inadequate for distinguishing the very rich from the poor, consistent

with the observations of Filmer and Scott (2012) and McKenzie (2005). This inadequacy

results in lower variance and, consequently, lower levels of reported inequality compared to

income-based measures.

Alternatively, regression-based imputations are commonly used, with the multiple impu-

tation procedure being particularly prevalent (McKenzie 2005; Ferreira, Gignoux, and Aran

2011; Dang and Lanjouw 2023b). These regression models typically exhibit reduced distri-

bution variance due to the error term’s exclusion. A random error term from the empirical

distribution of errors of the model is usually included in the prediction to account for this

variance.

Our findings indicate that while this method attempts to account for variance, it intro-

duces a downward bias when the analysis involves relationships with variables not included

in the prediction model. This bias stems from the correlation between the added error term

and these external variables, which can distort individuals’ positions within the income dis-

tribution. We illustrate this e↵ect through our Inequality of Opportunity (IOp) analysis, a

relevant case study since circumstances are typically not included in surveys containing in-

come information. However, this bias could also a↵ect analyses of poverty and its dynamics.

To overcome this issue, we propose an alternative methodology that avoids incorporating

the error term. Instead, we adjust the predicted values by aligning them with the observed

values in the survey used for model estimation. This approach involves calculating the

deviations between our predictions and the original data and adjusting the predictions to

reflect the empirical distribution more accurately.
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