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Abstract 

In this paper we study the use of synthetic panels to estimate 

intergenerational income mobility in the absence of panel data. Using 

mobility curves, we show that while existing techniques for generating 

synthetic panels under strong parametric assumptions provide accurate 

estimates of transitions into and out of poverty, estimates of mobility a 

broader range of mobility measures are biased. We then introduce a 

semiparametric technique using copulas to estimate synthetic panels.  We 

validate our approach using data from the United States and show that 

our approach results in improved estimates of intra- and intergenerational 

mobility. We then apply the technique to estimate intergenerational 

income mobility in Mexico. 

Keywords: mobility curves, synthetic panels, intergenerational mobility, 
Mexico, United States. 
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1. Introduction 

Inequality and inequality of opportunity are extremely important policy issues in many 
countries around the world. There has been a large amount of academic research 
documenting the high and widening levels of inequality in many developed and 
developing countries. Policies that target education and health outcomes are often 
introduced with the goal of decreasing inequality of opportunity and leveling the playing 
field between children from poor and wealthy households.  However, due to the 
exceptionally high data requirements, we know very little about the level of equality of 
opportunity and mobility in most countries or how these may be changing over time. 
This is especially true for mobility of non-income measures of well-being such as 
consumption and wealth.   

There have been attempts to estimate mobility without panel data on parent and 
child incomes. However, these papers generally estimate mobility of a proxy for income, 
such as education level (Hertz et al. 2007; Nimubona and Vencatachellum 2007; Emran 
and Shilpi 2012), occupational class (Emran and Shilpi 2011), indices of status (Torche 
2005), or some combination of these variables (Behrman et al. 2001; Emran and Sun 
2012) which only partially capture the relationship between parent and child incomes. 
Other works estimate the intergenerational elasticity of income in developing countries, 
for example by using two stage two sample instrumental variables (Guimaraes Ferreira 
and Veloso 2006; Dunn 2007; Nunez and Miranda 2010) or by looking at cases where 
parents and adult children reside together (Hertz 2001; Quheng, Gustafsson, and Shi 
2012; Hnatkovska, Lahiri, and Paul 2013). 

A similar problem exists in the literature on intragenerational mobility. In that 
context, the lack of panels following individuals or households over shorter time periods 
has limited researchers’ ability to study transitions into and out of poverty and transitory 
and chronic poverty. To overcome the data limitations, work by Deaton (1985), Banks, 
Blundell, and Brugiavini (2001), and Antman and Mckenzie (Antman and McKenzie 
2007) have used data from multiple cross sections and cohort level changes in income 
to study poverty and mobility. 

Building on work by Elbers, Lanjouw, and Lanjouw (2003), Dang, Lanjouw, Luoto, 
and McKenzie (2011) (hereafter DLLM) proposed an approach to study poverty 
transitions by constructing synthetic panels using multiple cross sections.  In their 
method, household income is estimated using time-invariant characteristics in two 
separate cross sections of data. For any household observed in the initial cross section 
but not in the final cross section, the probability of transitioning out of poverty depends 
on its estimated income in the final period as well as the correlation between the 
residual of the estimated income in the initial and final periods. By making conservative 
assumptions about the relationship between the initial and final income residuals, they 
establish upper and lower bounds on the proportion of the population that escapes or 
falls into poverty across any possible poverty line. In subsequent papers (Cruces et al. 
2011; Dang and Lanjouw 2013), they make stronger assumptions about the relationship 
between initial and final income so that estimating mobility is reduced to estimating a 
single parameter. In a validation exercise using panel data, they show how this allows 
them to get more precise and generally accurate estimates of movements into and out 
of poverty. 
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The mobility curve (Foster and Rothbaum 2014) is a useful tool to validate the 
results of synthetic panel estimates of mobility as it allows the researcher to compare 
the estimate of true mobility (or poverty transitions) at all possible poverty lines 
simultaneously. 

In this paper, we extend this research on synthetic panels in two ways. First, we 
show that a semiparametric copula specification using copulas generally provides a 
more accurate estimate of intragenerational and intergenerational mobility than the 
parametric specification in DLLM. We validate the semiparametric copula mobility 
estimates using a variety of data sets from the United States.  We test parametric and 
semiparametric estimates for intragenerational mobility using the Panel Study of Income 
Dynamics Cross National Equivalence File (PSID-CNEF) and the public use file of the 
Current Population Survey Annual Social and Economic Supplement (CPS ASEC). 
Second, we apply the synthetic panel technique to the estimation of intergenerational 
mobility. Using the U.S. National Longitudinal Surveys of Youth (NLSY), we show that a 
more flexible copula model provides a more accurate estimate of the known 
intergenerational mobility than the parametric specification proposed by DLLM. After 
validating the use of synthetic panels to estimate intergenerational mobility, we apply 
the technique to measuring intergenerational mobility in Mexico, where panel data 
containing income of matched parents and their children does not exist. 

To estimate Mexican intergenerational mobility, we use two sources of cross 
sectional data. The first, the ESRU Survey on Social Mobility in Mexico (EMOVI),1 
surveyed cross sections of Mexican households in 2006 and 2011 about their current 
demographic, household, and economic characteristics in addition to asking a series of 
retrospective questions about the circumstances of the household heads as children in 
their parent’s households. We match a subgroup of the EMOVI households to 
households from their parents’ cohort in the Mexican national statistical office’s (INEGI) 
survey of household income and expenditures (ENIGH).2 We construct synthetic panels 
from the EMOVI and ENIGH cross sections to estimate various measures of 
intergenerational mobility for Mexican children born between 1966 and 1981. 

2. Synthetic Panels 

The synthetic panel technique introduced by DLLM has a number of advantages over 
previous techniques. This method depends on fewer assumptions than other 
approaches and allows for comparisons within groups as well as between groups. This 
is important in the context of intergenerational mobility and equality of opportunity as we 
may interested in differences in mobility by quantile or race, among other 
decompositions. 

We will begin with a brief discussion of the DLLM technique. Suppose there are two 

surveys of 𝑁1 and 𝑁2 individuals respectively that are random cross sections of the 
populations of interest. This could be the same population of households for 
intragenerational mobility or parent and child households for intergenerational mobility. 

                                                      
1
 Encuesta ESRU de Movilidad Social en México. ESRU is an acronym for the Fundación Espinosa 

Rugarcía, the foundation that funded the survey. 
2
 INEGI: Instituto Nacional de Estadística y Geografía. ENIGH: Encuesta Nacional de Ingresos y Gastos 

de los Hogares. 
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Let 𝑥𝑖𝑡 be a vector of household 𝑖’s characteristics in period 𝑡. These characteristics can 
be time invariant (race, ethnicity, sex, place of birth, etc.), deterministic (age) or time-
varying characteristics that can be recalled with accuracy (occupation type, employment 
status, household characteristics such as automobile ownership, size and 

characteristics of dwellings, etc.). Let 𝑦𝑖𝑡 be a measure of economic status, such as 
income, wealth, or consumption, which we will call income for ease of exposition.  

Income can be expressed as a linear projection of the characteristics 𝑥𝑖𝑡 as: 

𝑦𝑖𝑡 = 𝛽𝑡
′𝑥𝑖𝑡 + 𝜖𝑖𝑡 (2.1) 

Given a poverty line or income cutoff 𝑐𝑡, the proportion of household that are 
upwardly mobile can be defined as: 

𝑃(𝑦𝑖1 ≤ 𝑐1 𝑎𝑛𝑑 𝑦𝑖2 > 𝑐2). (2.2) 

This is the proportion of the population below the poverty line 𝑐1 in period 1 but above 

the poverty line 𝑐2 in period 2. For downward mobility, 𝑃(𝑦𝑖1 > 𝑐1 𝑎𝑛𝑑 𝑦𝑖2 ≤ 𝑐2) 
represents the transition from non-poor to poor status. Unfortunately without panel data, 

we do not observe 𝑦𝑖1 and 𝑦𝑖2 for the same households so we cannot calculate (2.2). 
DLLM propose rewriting equation (2.2) by substituting (2.1) in for 𝑦𝑖𝑡 so that: 

𝑃(𝜖𝑖1 ≤ 𝑐1 − 𝛽1
′𝑥𝑖1 𝑎𝑛𝑑 𝜖𝑖2 > 𝑐2 − 𝛽2

′ 𝑥𝑖2). (2.3) 

From this equation, upward mobility depends only on the joint distribution of the error 

terms, as all of the other terms (𝑐𝑡, 𝛽𝑡, 𝑥𝑖𝑡 , 𝜖𝑖𝑡) are known or can be estimated. 
From (2.3), they estimate bounds on mobility by making assumptions about the 

relationship between 𝜖𝑖1 and 𝜖𝑖2. They estimate an upper bound on mobility by 
assuming that the two error terms are completely independent of each other and using 
a bootstrap to estimate an average level of mobility. Their lower bound estimate of 
mobility is based on perfect correlation of the error terms which they implement by 

assuming 𝜖𝑖1 = 𝜖𝑖2 for each household. They confirm that with panel data from 
Indonesia and Vietnam, the true estimate is nearly always contained by the bounds, 
even when the sample is decomposed into regional subgroups. However, the bounds 
themselves can be very wide. For example, at the poverty line in Indonesia between 
1997 and 2000, the true level of upward mobility in the panel data was 0.08, but the 
lower bound was 0.03 and the upper bound was 0.12. Fields and Viollaz (2013) use 
data from Chile to test a variety concepts of mobility, including time dependence 
(correlation), positional movement, share movement, income movement, and mobility 
and inequality. They also find that the upper and lower bounds proposed are too wide 
and provide “limited information about poverty transition rates.” 

To obtain more narrow estimates on the bounds of mobility or a point estimate 

requires further assumptions about the relationship between the 𝜖𝑖𝑡 residuals. One 
possible assumption, made by DLLM, is that 𝜖𝑖1 and 𝜖𝑖2 follow a bivariate normal 
distribution with correlation coefficient 𝜌 and standard deviations 𝜎𝜖1

 and 𝜎𝜖2
. One can 

obtain narrower bounds by assuming that there is a maximum and minimum possible 

correlation of the errors such that 0 < 𝑝𝐿 < 𝑝𝐻 < 1. By narrowing the range of possible 
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correlations to 𝜌𝐿 = 0.3 and 𝜌𝐻 = 0.7, the bounds on upward mobility across the poverty 
line for Indonesia are narrowed to [0.08,0.12] in their paper. 

Cruces et al. (2011) estimate mobility under the bivariate normality assumption 
using panel data from Chile, Nicaragua, and Peru. They find that “the methodology 
performs well in predicting true mobility in and out of poverty by means of two rounds of 
cross-sectional data; true mobility lies within the two bounds most of the time.” They 

also note that improving the model (including more characteristics in 𝑥𝑖𝑡 to provide a 
better estimate of 𝑦𝑖𝑡 and therefore smaller residuals) results in more accurate point 
estimates of mobility from synthetic panels and narrower bounds for a given set of 

parameters 𝜌𝐿 and 𝜌𝐻. 
If the true value for 𝜌 were known or could be estimated, one could obtain a point 

estimate for mobility rather than bounds. Dang and Lanjouw (2013) propose a method 
using age cohorts to estimate the correlation between period 1 and period 2 income 
𝜌𝑦1𝑦2

. The income correlation is equal to: 

𝜌𝑦1𝑦2
=

cov(𝑦𝑖1, 𝑦𝑖2)

√var(𝑦𝑖1)var(𝑦𝑖2)
= √

var(𝑦𝑖1)

var(𝑦𝑖2)
𝛿 (2.4) 

Using the mean income for each cohort 𝑐 in period 𝑡, �̅�𝑐𝑡, 𝛿 can be estimate from the 
cohort regression: 

�̅�𝑐2 = 𝛿′�̅�𝑐1 + �̅�𝑐2 (2.5) 

For this estimate to be unbiased, the cohort variable must satisfy the conditions of an 
instrumental variable (including exogeneity and relevance). 

With the estimated income correlations, the correlation between regression 
residuals can also be estimated by rearranging the terms in the correlation equation 
using (2.1) as: 

𝜌𝑦1𝑦2
=

cov(𝑦𝑖1, 𝑦𝑖2)

√var(𝑦𝑖1)var(𝑦𝑖2)
=

cov(𝛽1
′𝑥𝑖1 + 𝜖𝑖1, 𝛽2

′ 𝑥𝑖2 + 𝜖𝑖2)

√var(𝑦𝑖1)var(𝑦𝑖2)
 (2.6) 

If the two samples come from the same population (with the same distribution of 𝑥 
variables, an identifying assumption in DLLM), then (2.6) can be rewritten as: 

𝜌𝑦1𝑦2
=

𝛽1
′𝑣𝑎𝑟(𝑥𝑖)𝛽2 + 𝜌√𝜎𝜖1

2 𝜎𝜖2
2

√var(𝑦𝑖1)var(𝑦𝑖2)
 

(2.7) 

From (2.7), the correlation of regression residuals 𝜌 can be estimated given an estimate 
of the correlation of incomes 𝜌𝑦1𝑦2

 as all of the other terms can be estimated from the 

marginal distributions of the variables.   

They test their mobility estimates with the estimated 𝜌’s using data from a more 
expansive set of countries, including Bosnia-Herzegovina, Lao, the United States, Peru, 
and Vietnam. They find that their results are “quite accurate” and that they “are good not 
only for the general population but for smaller population groups as well.” 
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3. Mobility Curves 

In order to test and validate different synthetic panel techniques on intergenerational 
mobility, we first use mobility curves (Foster and Rothbaum 2014). Mobility curves plot 
transitions into and out of poverty at all possible poverty lines. This allows us both to 
compare our results to DLLM and to analyze how well synthetic panels predict income 
changes at other points in the distribution and not just at the poverty line or a small set 
of possible lines. 

In this section we provide a brief summary of the mobility curve. The mobility curve 

is defined to compare how income gains and losses affect welfare. With 𝑦𝑡 = (𝑦𝑖𝑡, … 𝑦𝑛𝑡) 
and 𝑦 = (𝑦1, 𝑦2), upward and downward mobility at a given cutoff  𝑐 are : 

𝑚𝑈(𝑦, 𝑐) =
1

𝑛
∑ 𝐼(𝑦1𝑖 ≤ 𝑐)𝐼(𝑦2𝑖 > 𝑐)

𝑛

𝑖=1

 

𝑚𝐷(𝑦, 𝑐) =
1

𝑛
∑ 𝐼(𝑦1𝑖 > 𝑐)𝐼(𝑦2𝑖 ≤ 𝑐)

𝑛

𝑖=1

 

(3.1) 

Under the assumptions of utilitarian, time-separable social welfare, the mobility curve is 
defined so that if income gains resulted in a larger per capita increase in welfare in 

society 𝐵 than in society 𝐴, 𝐵 experienced more upward mobility. Let 𝑦𝐴 and 𝑦𝐵 be 
initial and final period incomes for societies 𝐴 and 𝐵 respectively. From equation (3.1), if 

𝑚𝑈(𝑦𝐵, 𝑐) ≥ 𝑚𝑈(𝑦𝐴, 𝑐) for all possible cutoffs 𝑐 and for some cutoffs 𝑚𝑈(𝑦𝐵, 𝑐) >
𝑚𝑈(𝑦𝐴, 𝑐) , then 𝐵 experienced a larger per capita increase in welfare from upward 
mobility for any monotonically increasing utility function. By definition then, upward 

mobility is greater in 𝐵 than 𝐴. The mobility curve is constructed by plotting 𝑚𝑈 and 𝑚𝐷 
for all possible values of 𝑐. By looking at the mobility curves for 𝐵 and 𝐴, we can easily 
see if 𝐵 has more upward mobility than 𝐴. Figure 1 shows an example taken from 
Foster and Rothbaum (2014) with two societies 𝐴 and 𝐵 that share identical period 1 

incomes, 𝑦1
𝐴 = 𝑦1

𝐵 = (1,5), but where the period 2 incomes differ, 𝑦2
𝐴 = (2,4), and 

𝑦2
𝐵 = (3,3). It is clear both from looking at the numbers and the mobility curves in Figure 

1 that society 𝐵 experienced greater upward mobility (1 → 3 compared to 1 → 2) and 
greater downward mobility (5 → 3 compared to 5 → 4) than society 𝐴.   

As we noted above, mobility curves are also a way to look at poverty transitions as 
they plot transitions out of poverty (upward mobility) and into poverty (downward 

mobility) across all possible poverty lines. If 𝑐1 = 𝑐2, 𝑚𝑈 in equation (3.1) is equal to 
equation (2.2).3 By allowing us to simultaneously view mobility across all possible 
poverty lines, mobility curves make it easier to validate the accuracy of synthetic panels 
in estimating mobility at all possible poverty lines, rather than at one or a subset of 
arbitrarily chosen lines. As such, mobility curves provide a way to view a “distribution” of 
mobility that may not be possible with single index measures of mobility or transition 
matrices. 

                                                      
3
 The poverty lines 𝑐1 and 𝑐2 need not be the same for each household.  For example, if household 

incomes are equivalence adjusted, then the poverty line for each household would be the same in 
equivalence-adjusted dollars but not in absolute income. 
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4. Synthetic Panels, Bivariate Normal Errors, and Mobility Curves 

Dang and Lanjouw (2013) conducted a series of validations of the use of synthetic 
panels to estimate poverty transitions. In this section, we will discuss their validation 
results. As we are extending the use of the technique to intergenerational mobility, we 
also validate the synthetic panel technique for intergenerational mobility using the 1979 
and 1997 National Longitudinal Surveys of Youth (NLSY) from the United States.   

Dang and Lanjouw (2013) compare the synthetic panel estimates of movements 
into and out of poverty4 in Bosnia-Herzegovina (2001-2004), Laos (2002/03-2007/08), 
Peru (2005-2006), the United States (2007-2009), and Vietnam (2006-2008). For 17 of 
the 20 transitions compared (poor to poor, poor to non-poor, non-poor to poor, non-poor 
to non-poor in each country), the true transition probability in the panel data and the 
synthetic panel estimates were not statistically significantly different from each other. 

However, care must be taken with these results. As an illustration, in Figure 2 we 
plot the true (sample) mobility curve alongside the synthetic panel estimate of the 
mobility curve for the United States for 2004-2006 using data from the PSID-CNEF 
2005 and 2007 waves. The synthetic panel was estimated for individuals aged 25-55 by 
first running an OLS regression on income with a small number of independent 
variables, including age, age squared, years of education, gender, and dummy 
variables for black and Hispanic.5 The OLS regression results are in Table 1. 

To estimate 𝜌, we used kendall’s 𝜏 (𝜌𝜏) to reduce the effect of extreme outliers. 
Under the assumption of bivariate normality, the relationship between the 𝜌𝜏 and 𝜌 is: 

𝜌 = sin (
𝜋

2
𝜌𝜏) (Demarta and McNeil 2007). For the PSID-CNEF, the actual correlation 

between the errors is 0.65 and the estimate from 𝜌𝜏 is 0.78. If we remove outliers whose 
predicted income is either 10 times higher or lower than their actual income, the 

correlation is 0.70.6 By estimating 𝜌 from 𝜌𝜏, we also do not have to specify which 
outliers to remove as no single extreme value has a large effect on 𝜌𝜏. 

At the poverty line ($10,790 in 2007 dollars), the synthetic panel prediction for 
upward and downward mobility (corresponding to the poor to non-poor and non-poor to 
poor transitions in Dang and Lanjouw) is very similar to the true mobility observed in the 
panel. However, for middle and higher income cutoffs, DLLM mobility exceeds the 
bootstrapped 95% confidence band of true mobility (at nearly all cutoffs above $50,000 
for upward mobility and $70,000 for downward mobility). In addition, at very low income 
levels (under $4,000 for upward and $10,000 for downward mobility), DLLM 
underpredicts mobility transitions. 

This pattern is not unique to the PSID-CNEF data. Figure 3 shows the true mobility 
curve with confidence intervals and DLLM estimate for the 1-year panel from the public 

                                                      
4
 In the US, the Panel Study of Income Dynamics (PSID) poverty line was used and in Bosnia-

Herzegovina, the 20
th
 percentile of 2001 consumption was used.  The authors used the official poverty 

line for each other country. 
5
 These variables are very similar to the ones used in Dang and Lanjouw (2013) with the PSID.  The goal 

is not to replicate their results exactly but to show how synthetic panels may provide a biased estimate of 
mobility at many points in the mobility curve and also yield their accurate poverty transition results. 
6
 As an example for the case of intergenerational mobility, for the NLSY97 removing these outliers 

increases 𝜌 fom 0.200 to 0.227, and the correlation estimated from 𝜌𝜏 is 0.246. 
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use CPS ASEC from 2005 to 2006.7 We analyze mobility of total household income 
adjusted using the square root equivalence scale for all households with heads 25-54 
years old in 2005. The OLS regression results for the CPS ASEC are shown in Table 2. 
The mobility curve results are very similar to the PSID, with the DLLM underestimating 
upward and downward mobility at very low income cutoffs and overestimating both at 
many middle and higher income cutoffs. In the CPS ASEC, the DLLM and true mobility 
curves converge at higher income cutoffs so that the two are not statistically significantly 
different in either upward or downward mobility at about $150,000 and above. 

Using data from the 1979 and 1997 NLSYs, we can also test the synthetic panel 
technique with intergenerational data. Again we use the square root equivalence scale 
to adjust household incomes. We measure intergenerational income mobility for 
children in their early years in the workforce (ages 26-30) compared to their parents 
income when the children were in their teens (14-18 in the NLSY79 and 12-16 in the 
NLSY97). In each case, we average the household income over two years to reduce the 
attenuation bias from measurement error (Mazumder 2005) as much as possible. The 
NLSY79 OLS regression for parents and children includes age, age squared, years of 
education, dummies for industrial category of the household head’s primary job, a 
dummy for urban status, region dummies, and dummies for non-Hispanic blacks, 
Hispanics and other non-whites. The OLS regression results are shown in Table 3.  

Figure 4 shows the true mobility curve and the synthetic panel estimate for various 
correlation values. As the correlation between period 1 and 2 errors is about 0.24, which 
is used for the synthetic panel estimates shown in the figure.8 Comparing the DLLM 
estimate to the true mobility curve, a number of things stand out. For both upward and 
downward mobility, as with PSID-CNEF and CPS ASEC intragenerational mobility, the 
DLLM estimate exceeded the 95% confidence band of the true mobility curve at many 
middle and high income cutoffs. Although not shown in the figure, by assuming bivariate 
normality the DLLM estimate actually exceeds the nonparametric DLLM upper bound 
estimate of no correlation between initial and final incomes in both upward and 
downward mobility at some cutoffs. 

Figure 5 shows intergenerational mobility and the DLLM estimate for the NLSY97 
sample. The OLS regression results for this group are in Table 4. In this case, fewer 
variables were used to show how the synthetic panel estimates performed even with a 

relatively low 𝑅2 in the OLS regression.9 The NLSY97 comparison between the DLLM 
estimates and the true mobility curve is very similar to the NLSY79 comparison. Again 
the DLLM mobility estimate exceeds the 95% confidence band for actual mobility at 

                                                      
7
 Confidence intervals estimated using CPS ASEC replicate weights.  For a discussion of standard errors 

and replicates weights in the CPS ASEC, see “Estimating ASEC Variances with Replicate Weights” (US 
Census Bureau 2013). The CPS ASEC surveys household based on their address and does not follow 
individuals who move, but instead surveys the new residents at the address in the later wave. Therefore, 
a matching process must be done to construct a panel from the survey. For a thorough discussion of the 
construction of panels from the CPS ASEC, see Madrian and Lefgren (2000). As our goal is only to 
validate synthetic panel techniques, we use a simple method to create the panel.  We include households 
whose head is of the same race and gender in both years and whose age is between one year less and 
two years greater in 2006 than in 2005.   
8
 The true error correlations are 0.241 for the NLSY79 and 0.246 for the NLSY97. 

9
 Cruces et al. (2011) show how increasing the number of explanatory variables improves the prediction 

and narrows the range between the upper and lower bounds as 𝜖𝑖𝑡 accounts for a smaller share of 
household income. 
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many middle and high income cutoffs. In both NLSYs, the DLLM mobility curves 
estimates for upward and downward mobility exceed the nonparametric upper bound 
over large ranges of cutoffs, for example including nearly all downward mobility cutoffs 
above $40,000 in both cases. 

5. Copulas and Dependence in Non-normal Error Distributions 

We showed in the previous section that even with the known correlation between 
period 1 and period 2 incomes, assuming bivariate normally distributed errors in the log 
income regressions can yield biased estimates of mobility. These estimates can even 
exceed the nonparametric upper limit, which makes no assumptions about the marginal 
distribution of the error terms. Therefore, a major source of this bias could be from the 
normality assumption. DLLM test and reject the normality assumption in both the 
univariate and bivariate error distributions for both countries analyzed. Dang and 
Lanjouw (2013) plot the log of incomes and consumption against the normal 
distributions for a variety of countries, and in all cases the errors deviate from normality 
as well. DLLM acknowledge that “despite this rejection we will maintain the 
assumption…, and thereby illustrate the performance of our parametric bounding 
methods in a typical practical situation where the underlying distributional assumption 
may not hold precisely.”10 

In this paper we propose an alternative technique to utilize the observed distribution 
of errors with copulas to estimate the joint distribution of income instead of assuming 
bivariate normality. In this way, we can test how removing the assumption of bivariate 
normally distributed errors can improve the estimation of mobility measures using 
synthetic panels. Copulas are functions that relate multivariate distributions to their 
marginal distributions. They are especially useful when the variables are non-normal 
(Trivedi and Zimmer 2006). Copulas have been used in a wide variety of applications in 
economics, especially finance (Cherubini, Luciano, and Vecchiato 2004), but also 
modeling income and wealth (Jäntti, Sierminska, and Van Kerm 2012), tax incidence 
and inequity (Bø, Lambert, and Thoresen 2011), and the distribution of income (Zimmer 
and Kim 2012), inequality (Vinh, Griffiths, and Chotikapanich 2010), and mobility 
(Bonhomme and Robin 2009). 

For any joint distribution 𝐹 there exists a copula 𝐶 that relates the joint to the 
marginal distributions 𝐹1 and 𝐹2 (Jaworski et al. 2010): 

𝐹(𝑥1, 𝑥2) = 𝐶(𝐹1
−1(𝑥1), 𝐹2

−1(𝑥2)). (5.1) 

The choice of copula determines the dependence structure between ranks in the period 
1 and period 2 marginal distributions.   

Many classes of copulas have been used in the literature. In this paper, we use the 
Gaussian (Normal) copula, which simulates the dependence structure of the 
multivariate normal distribution. The dependence between ranks in the error distribution 
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 In Dang and Lanjouw (2013), the authors attempt to reduce the deviation from normality by 
implementing a Box-Cox transformation of period 1 and 2 incomes to minimize the skewness of the 
transformed income distributions. This reduces but does not eliminate the biases reported in the previous 
section. Although far less frequently, the synthetic panel generated with the Box-Cox transformation at 
𝜌𝐴𝑐𝑡𝑢𝑎𝑙 exceeds the non-parametric upper bound DLLM estimate at some cutoffs as well. In none of the 
data sets analyzed in this paper does this occur using the Gaussian copula. 
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will be the same as in the case of bivariate normality, but the marginal distribution 𝐹1 
and 𝐹2 can be estimated from the empirical distributions in the data without imposing 
normality as in DLLM.We have chosen to use the Gaussian copula in this paper for a 
number of reasons. The first is simplicity. The Gaussian copula is determined by a 

single parameter, the correlation 𝜌 between period 1 and 2 incomes just as the DLLM 
results are under bivariate normality. In this way, we can compare our results to theirs 
under the same correlation parameter to evaluate the different techniques. Another 
advantage of the Gaussian copula is that if the DLLM bivariate normality assumption 
holds, the copula and DLLM will yield the same result. 

However, the Gaussian copula also has disadvantages relative to alternative 
copulas. One important shortcoming is that the Gaussian copula assumes no 
dependence between extreme values in the tails of the distribution (Demarta and 
McNeil 2007). Other more flexible copulas, such as the t copula provide additional 
parameter(s) which determine tail dependence. However, the goal in this paper is to 
show how relaxing the normality assumption using copulas can help in the estimation of 
mobility with synthetic panels, not to endorse the use of a specific copula.11 

We generate the synthetic panel using the Gaussian copula to estimate mobility 
measures and then repeat the process as in a bootstrap to find the average mobility 
curve using the copula approach as follows: 

1) Run the OLS regression of ln(𝑦𝑖𝑡) on independent variables 𝑥𝑖𝑡 to get 𝜖�̂�1 and 𝜖�̂�2 
for each individual or household from the two cross-sections. 

2) Generate a synthetic panel dependency matrix 𝑟 with 𝑛 observations where, 
𝑟𝑡 = (𝑟1𝑡, … , 𝑟𝑛𝑡), 𝑟 = (𝑟1, 𝑟2) 𝑟𝑗𝑡 ∈ [0,1] from the Gaussian copula with correlation 

parameter 𝜌. Each 𝑟𝑗𝑡 is the quantile in the error distribution for synthetic 

individual 𝑗 in period 𝑡. 
3) For each household, take a random draw from the copula distribution 

dependency vector 𝑟𝑗, where 𝑟𝑗 = (𝑟𝑗1, 𝑟𝑗2). 

4) Use the kernel density to estimate the empirical cdf of the period 1 and period 2 

error distributions, �̂�1, �̂�2. Then for each household 𝑖 with synthetic panel error 

draw 𝑗, the synthetic panel period 1 and period 2 errors are 𝜖�̃�1 = �̂�1
−1(𝑟𝑗1) and 

𝜖�̃�2 = �̂�2
−1(𝑟𝑗2).12 

5) Repeat for all 𝑖 individuals to get the complete synthetic panel income values 

with �̃�𝑖1 = 𝑥𝑖1
2′𝛽1 + 𝜖�̃�1 and �̃�𝑖2 = 𝑥𝑖2

′  𝛽2 + 𝜖�̃�2, where 𝑥𝑖1
2  are the period 1 covariates 

for each individual 𝑖 observed in period 2 and construct the mobility curve from 
the synthetic incomes. 

6) Repeat steps 1-5 with 𝐵 replications and average the mobility curve over all 
replications to compute the average synthetic panel estimate of the mobility 
curve (as in DLLM for the upper bound estimate of mobility). 

The next step is to validate the copula technique with existing data. Figure 2 and 

Figure 3 also show the copula estimate of mobility curves with the true value of 𝜌 from 

                                                      
11

 We leave to potential future work the task of selecting the appropriate copula and estimating additional 
copula parameters beyond  𝜌. 
12

 If the observations are equally weighted, the period 1 errors can be drawn directly from the observed 
error values.  However, if the observations have weights, the empirical cdf must be estimated and the 
errors drawn from the estimated distribution. 
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the PSID-CNEF and CPS ASEC 1-year panel respectively. Both techniques provide a 
reasonably accurate of the experienced mobility, especially near the poverty line 
(approximately $11,000 in each). 

In the online appendix, Appendix 2, we compare the absolute and squared 
deviations of the synthetic panel estimates from the true mobility observed in the panel, 
including for the quartile decomposition. These figures (A2.1-4 for the PSID-CNEF and 
A2.5-8 for the CPS ASEC) plot the deviation at each cutoff and the mean deviation up 
to each cutoff.13 While the absolute and squared deviations and their means for the 
copula estimates are not always less than for the DLLM, the copula is less biased at the 
majority of cutoffs in both the PSID-CNEF and CPS ASEC. In the quartile 
decompositions, the copula outperforms the DLLM at nearly all cutoffs as well. 

As we are studying intergenerational mobility, we again look at the 1979 and 1997 
waves of the NLSY and compare the DLLM and Gaussian copula results. In both cases, 
we calculate the copula synthetic panel mobility estimate using the true period 1 and 2 
error correlation (𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.24). The results for the NLSY79 are shown in Figure 4 and 
for the NLSY97 in Figure 5. In the deviation figures (A2.9-12 for the NLSY79 and A2.13-
16 for the NLSY97), at nearly every cutoff, the copula outperforms the DLLM both at the 

aggregate level (the mobility curve 𝑚 and aggregate mobility curve 𝑀) and for each 
quartile in the decomposition as well. 

Figure 6 shows the complete mobility curve results including quartile decomposition 
for the NLSY79. Both the copula and DLLM overestimate upward mobility in the 1st 
quartile (DLLM at lower income levels in both). In the second quartile, both synthetic 
panel estimates have the upward and downward mobility curves shifted to the left, but in 
both cases, the copula is closer to the true value than the DLLM. The copula results are 
a very good match of the true results in the third quartile, and both the copula and the 
DLLM overestimate downward mobility in the 4th quartile. The results are nearly 
identical for the NLSY97 (not shown). 

A major reason the DLLM results may be biased is that the predicted initial and final 
synthetic panel distributions do not match the data, due to the normality assumption. 
The DLLM mobility curves in the 2nd and 3rd quartiles are shifted to the left as a result. 
The copula, by utilizing the empirical error distributions, does not suffer as much from 
this shortcoming. 

It is clear from these figures that neither the copula nor the DLLM estimates for 
mobility are perfect. However, the deviation comparisons in Appendix 2 show that the 
copula generally offers less biased estimate of true mobility than DLLM using these data 
sets. 

We also calculate the true and synthetic panel estimates for a variety of other 
measures of mobility, including the intergenerational elasticity of income (IGE), the 
correlation between log incomes, and quintile transition matrices. These estimates are 
shown in Appendix 1. For each mobility measure, the results are reported both for 

𝜌𝐴𝑐𝑡𝑢𝑎𝑙 and a range of possible correlations 𝜌𝐿 < 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 < 𝜌𝐻. In each of the four data 
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 The deviation at each cutoff is measures for 𝑘 = 1,2 (absolute, squared) as 𝑑𝑘(𝑐) = |𝑚𝑈
𝑇𝑟𝑢𝑒(𝑦, 𝑐) −

𝑚𝑈
𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑦, 𝑐)|

𝑘
+ |𝑚𝐷

𝑇𝑟𝑢𝑒(𝑦, 𝑐) − 𝑚𝐷
𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑦, 𝑐)|

𝑘
.  The mean deviation up to each cutoff (𝑐) is the 

average of the deviations at all cutoffs up to and including 𝑐 as  

𝜇𝑘
𝑑(𝑐) =

1

𝑛𝑐
(∑ |𝑚𝑈

𝑇𝑟𝑢𝑒(𝑦, 𝑐𝑖) − 𝑚𝑈
𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑦, 𝑐𝑖)|

𝑘
+ |𝑚𝐷

𝑇𝑟𝑢𝑒(𝑦, 𝑐𝑖) − 𝑚𝐷
𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑦, 𝑐𝑖)|

𝑘
𝑛𝑐
𝑖=1 ). 
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sets we have discussed, the copula estimate of the IGE (Table A1.1) and log income 

correlation (Table A1.2) at 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 is closer to the true value than DLLM. In the two 
NLSYs, the copula IGE and correlation estimates are nearly the same as the true 
values.   

The two synthetic panel techniques have nearly identical results in estimating the 
quintile transition matrices (Table A1.3). Both the DLLM and copula techniques were 
more accurate in estimating intergenerational transitions in the NLSYs than 
intragenerational ones in the PSID-CNEF and CPS ASEC.  For majority of the cells in 
the quintile transition matrices of the NLSYs, the true transition probability is within the 
95% confidence interval of the DLLM and copula estimates. The fact that the copula 
offers little to no advantage in estimating transitions supports the notion that the biases 
in the DLLM synthetic panels are due to distributional assumptions, as these 
assumptions are likely to be less relevant when analyzing rank changes as opposed to 
income changes. 

The validation results from the Gaussian copula give us confidence in the 
applicability of this technique in estimating intergenerational mobility with synthetic 
panels. It also suggests that an avenue for future research is to test the use of copulas 
with greater dependence at the tails of the error distribution. This may reduce the biases 
caused by the overestimation of downward mobility at the top of the distribution and 
upward mobility at the bottom of the distribution. 

6. EMOVI and Intergenerational Mobility in Mexico 

Now we turn to applying this technique to estimating intergenerational mobility in 
Mexico, where the necessary panel data does not exist. To construct this estimate we 
use two distinct sources of data. One source of data must include information about the 

income (𝑦𝑖2) and characteristics (𝑥𝑖2) of child households. This data source must also 

include retrospective information about the parents of the child household cohort (𝑥𝑖1
2 ).  

The second source of data must include income (𝑦𝑖1) and characteristics (𝑥𝑖1) for a 
cross section of individuals from the parent cohort. The 𝑥𝑖1 variables in the parent data 

set must also match the 𝑥𝑖1
2  retrospective information from the child cohort. 

For the child cohort and retrospective data, we use the EMOVI survey. This survey 
was conducted on cross sections of Mexican households in 2006 and 2011 with 
household heads between the ages of 25 and 64. The 2006 EMOVI includes 4,743 
households that report positive income and supply information about their parent 
characteristics. The 2011 EMOVI includes 3,818 such individuals. The survey includes 
a number of questions about individual and household characteristics in the current 
generation, including assets, monthly income, occupation, and education.  Crucially for 
this study, the EMOVI surveys also include a series of questions about the 
characteristics of their parents and the childhood households of the interviewed 
individuals. These questions are generally of the form, “When you were 14, …” and 
include information about parent occupations, education levels, locality, and household 
characteristics. The retrospective questions focus on characteristics that an individual is 
likely to recall with reasonable accuracy. For example, the children are not asked about 
their parent’s monthly income, but instead about whether their parents worked and what 
their occupation was. The children were also asked retrospective questions about 
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household characteristics that are likely good predictors of income, such as ownership 
of cars, telephones, and televisions and access to electricity and indoor plumbing. The 
synthetic panel technique requires 𝑥𝑖𝑡 variables that are only good predictors of income. 
The relationship need not be causal, so these questions about assets and access to 
services are especially valuable in generating accurate estimates of mobility. 

We use the Mexican household income and expenditure survey, the ENIGH, as the 
source of data on the income and household characteristics of the parent cohort. The 
ENIGH is a nationally representative household survey in Mexico. The ENIGH includes 
information on household income, consumption, and various household characteristics. 
The ENIGH survey was conducted in 1984, 1989 and then every other year from 1992. 
The ENIGH and the EMOVI surveys are a good match for this analysis as there is a 
significant amount of overlap between the retrospective questions in the EMOVI surveys 
and the questions in the ENIGH. 

We match a subset of the individuals in the EMOVI surveys with individuals from 
their parent cohorts in the ENIGH. Because the retrospective questions in the EMOVI 
survey ask about parent and household characteristics when the respondents were 14, 
we construct the synthetic panels for a subset of the individuals in the EMOVI samples. 
Individuals who were 36 in 2006 were 14 in 1984, the first year the ENIGH survey was 
conducted. We therefore restrict our focus to those individuals in the 2006 EMOVI who 
were between 30 and 39 (born 1966-1976) and match them to individuals in their parent 
cohort in the 1984 ENIGH. Individuals who were 36 in the 2011 EMOVI were 14 in 
1989. As a result, we use the 1989 ENIGH as the cohort matched to the parents of the 
2011 EMOVI individuals where between 30 and 39 (born 1971-1981). The household 
income used is individual equivalent household income using the square root 
equivalence scale. In both ENIGH surveys, we include only households with children in 
the sample to match the parent cohorts from the EMOVI surveys. 

To be included in 𝑥𝑖1, 𝑥𝑖2, and 𝑥𝑖1
2 , we restrict our attention to variables in all three 

survey sections, the parent cohort survey (ENIGH), the child household survey 
(EMOVI), and the survey of child households about their parent household 
characteristics (EMOVI retrospective questions). This includes education level, 
occupation, region, ownership of car, telephone, and television, and access to indoor 
plumbing and electricity. The regressions also include dummies for various city sizes 
using municipality data from the Mexican census from 1980 for the ENIGH84 and 
EMOVI06 parent cohort, from 1990 for the ENIGH89 and EMOVI11 parent cohort, and 
2005 for the EMOVI06 and EMOVI11 child cohorts. Our sample of 30-39 year-old 
household heads is 1,388 for the EMOVI06 and 1,042 for the EMOVI11.   

Table 5 shows the summary statistics for the regression variables in the ENIGH and 
EMOVI parent cohorts. If recall were accurate and the ENIGH surveys were a 
representative sample of parents from the EMOVI cohorts, the parent characteristics 
should be the same between each ENIGH and EMOVI parent cohort pair. For both pairs 
(ENIGH84-EMOVI06 and ENIGH89-EMOVI11) there are some variables with relatively 
large differences in means including, for example, the dummies for secondary education 
and indoor plumbing.  However, in general, the means of the included variables for each 
parent cohort pair are similar. The regressions results are in Table 6 for the ENIGH84 
and EMOVI06 and ENIGH89 and EMOVI11 parent-child cohorts. For both parent 

cohorts, the 𝑅2 = 0.50. For the child cohorts, especially in the EMOVI11, the 𝑅2 is lower. 
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This may be due in part due to the lower predictive power of some variables on income 
in the 2000s as compared to the 1980s such as owning a TV, having electricity, etc.14 

In order to construct the synthetic panels, we must first estimate the OLS error 

correlation 𝜌 for each period. To do this we follow Dang and Lanjouw (2013) in 
estimating 𝜌𝑦1𝑦2

 using cohort groups. In our case, we construct cohorts of parent 

characteristics from the ENIGH84 and 89 samples and the parent characteristics of the 
EMOVI06 and 11 samples. We use age-city size cohorts for the parent generations. We 
create age cohorts in three year cohort groups from 35 to 52 as well as under 35 
parents and over 52 parents in 1984 and 1989 respectively with each age cohort 
divided by the four city size dummies in Table 5. This yields 32 cohort groups. Using 
equations (2.4) we calculated 𝜌𝑦1𝑦2

 on the pooled ENIGH84/89 and EMOVI06/11 

sample to increase our cohort group sizes. This yielded an estimated log income 
correlation of 0.39, which is slightly higher than but similar to the correlation in the NLSY 

samples (𝜌𝑦1𝑦2
𝑁𝐿𝑆𝑌79 = 0.36 and 𝜌𝑦1𝑦2

𝑁𝐿𝑆𝑌97 = 0.31). We then estimated the OLS residual 

correlation using equation (2.7) using the 𝑥𝑖 ’s from the EMOVI retrospective questions, 

which results in 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
84−06 = 0.12 and 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

89−11 = 0.18. The higher estimated 𝜌 for the 

ENIGH89-EMOVI11 is due to the lower 𝑅2 in the EMOVI11 child income regression. 
Figure 7 shows the estimated intergenerational mobility curve for the 84-06 and 89-

11 periods using the estimated correlations as well as upper and lower bound estimates 

with 𝜌𝑈 = 0.05 and 𝜌𝐿 = 0.30. The upper and lower bounds provide a very narrow range 
of mobility estimates, with a maximum difference between the two in both periods for 
any cutoff of 0.024. Due to the narrow bounds on the mobility estimates, we will proceed 

with our analysis using 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑.15 At 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑, we find that upward and downward 
mobility were greater at lower income levels for the 84-06 cohort and greater at higher 
income levels for the 89-11 cohort. Figure 7 also shows the mobility the quartile 
decompositions for both the 84-06 and 89-11 periods. The gap between the mobility 
curves of the two cohorts are primarily due to differences in mobility of children in higher 
income quantiles.   

However, these absolute mobility differences are primarily due to differences in the 
initial and final income distributions for both the parent and child cohorts in the 1984 and 
1989 ENIGH and 2006 and 2011 EMOVI. Figure 8 shows the mobility curve and 
decomposition for mobility of rank. There are virtually no differences in rank mobility 
between the two ENIGH-EMOVI cohorts in any of the quartiles at any cutoff. This 
persistence of rank mobility over short periods of time is consistent with the NLSY data 
and other work on mobility over time in the US using tax data (Chetty, Hendren, Kline, 
Saez, et al. 2014). 

Because of the stability in the rank mobility curves and in order to compare our 
results to other estimates of intergenerational mobility in Mexico and elsewhere, we also 
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 Because of the lower child regression 𝑅2, we also tested a variation of the copula procedure detailed 
on page 11.  In this variation, the child errors 𝜖𝑖2 were not replaced by a random draw from the empirical 

distribution based on the dependency matrix 𝑟. Instead, each individual’s position in the error distribution 
was matched to the corresponding position in the dependency matrix where 𝑟𝑗2 = �̂�𝑖2. The residual 

assigned to that individual’s parents was then �̃�𝑖1 = 𝐹−1(𝑟𝐽1), from the corresponding period 1 rank from 

the dependency matrix. The mobility results were virtually identical for the two methods for all periods in 
both the Mexican and US NLSY data. 
15

 Estimates of the different mobility measures using 𝜌𝐿 and 𝜌𝐻 are reported in Appendix 1. 
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look at quintile and decile transition matrices, shown in Table 7 and Table 8. In the 
EMOVI survey, individuals were asked to rate the relative socioeconomic status of their 
current household and their parent’s household. Using the full 2011 EMOVI sample 
(and not just individuals 30-39 years old individuals as in this study), Velez, Campos 
and Huerta (2013) found that 48% of individuals who grew up in households in the 
lowest status quintile remained in the lowest status quintile as adults. In addition 52% of 
children who grew up in household in the highest status quintile remained there as well. 

Using income and only EMOVI households headed by 30-39 year-olds, we estimate 
that in the two cohorts 35-38% of children who grew up in the poorest quintile of 
households remained there, and 37-39% of children born in households in the highest 
income quintile remained there. Children born in the poorest quintile of households are 
approximately five times more likely to end up in the poorest quintile than children born 
in the richest quintile.  

This is generally similar to the results with the US data. 43% of children born to the 
poorest quintile remained there in the NLSY79, and 40% did so in the NLSY97.  In both 
cases, the copula estimate was 4% below the true value and nearly within the same 
range as the estimates for Mexico. For children born to the top quintile, in both NLSYs 
38% of children born in the top quintile remained there as adults.  However, the copula 

estimates at 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 are 33% and 35%.16 For children born in the top quintile, the NLSY 
sample values are nearly identical to our estimates for Mexico, but the NLSY copula 
estimates are lower. 

The decile transition matrix (Table 8) shows just how great the gap in equality of 
opportunity is between children born in poor households and children from rich 
households. Averaging across the two Mexican cohorts, we estimate that children born 
in 1st decile households are about 11 times as likely to be in the first decile as adults 
than children born in the top decile. In addition, top decile children are nearly 10 times 
more likely to be in the top decile as adults than bottom decile children.17 From the US 
NLSY data, the estimates are very similar. Averaging across the two NLYSs, bottom 
decile children are 10 times more likely to be bottom decile adults than top decile 
children (12 times in the copula estimate at 𝜌𝐴𝑐𝑡𝑢𝑎𝑙). Top decile NLSY children are 14 
times more likely to be top decile NLSY adults (9 times in the copula estimate at 
𝜌𝐴𝑐𝑡𝑢𝑎𝑙). 

We can also compare rank mobility between Mexico and the United States by 
looking at the rank-rank slope as in Chetty, Hendren, Kline, and Saez (2014).  This is 
the coefficient from a regression of child on parent ranks in their respective income 
distributions. Our estimates of the rank-rank slope for Mexico are 0.35 for the 84-06 
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 Using tax data for children roughly the age those in the NLSY97 and, Chetty, Hendren, Kline, and Saez 
(2014) estimate the probability of bottom quintile children remaining in the bottom quintile at 34% and the 
probability of top quintile children remaining in the top quintile at 37%. Their samples differ from ours in a 
couple of ways. They include households with zero income and do not equivalence adjust household 
income. 
17

 In the ENIGH84-EMOVI06, bottom decile children are 15 times more likely to be in the bottom decile as 
adults than top decile children. From the ENIGH89-EMOVI11, we estimate that they are 8 times more 
likely. Averaging the probabilities of top and bottom decile children being in the bottom decile across the 
two cohorts, we estimate that bottom decile children are 11 times more likely to be in the bottom decile. 
For the probability of adult children being in the top decile, the estimate from averaging across the two 
cohorts is 10 times (11 times in the 84-06 cohort and 9 times in the 89-11 cohort). 
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cohort and 0.38 for the 89-11 cohort.  This is very similar to the copula estimates of 0.39 
for the NLSY79 and 0.35 for the NLSY97. Both NLSY copula estimates slightly 
underestimate the sample rank-rank slopes, which are 0.42 in the NLSY79 and 0.40 in 
the NLSY97.18 

7. Conclusion 

In this paper, we used a variety of mobility measures, such mobility curves, IGE, 
correlation, transition matrices, to show that synthetic panels can be used to provide 
reasonably accurate estimates of intergenerational income mobility in the absence of 
panel data. To do so, we introduced the use of copulas to improve the accuracy of 
synthetic panel mobility estimates over methods that impose strong distributional 
assumptions that are known to be generally invalid. We validated the use of copula-
based synthetic panels on intra- and intergenerational mobility, and we used the copula-
based synthetic panel technique to estimate income mobility in the context of Mexico, 
where no suitable panel data exists. 

This allowed us to construct estimates of each of the aforementioned measures for 
income mobility in Mexico. Our estimates enable us to quantify the gaps in equality of 
opportunity available to children in Mexico, for example by comparing the prospects of 
children born in the richest households to those born in the poorest households. We 
estimate that children from the poorest decile of households are about 11 times more 
likely to be in the bottom decile as adults than children from the top decile, and top 
decile children are 10 times more likely to be in the top decile as adults than children in 
the bottom decile. These estimates suggest that rank mobility is very similar between 
the United States and Mexico. 
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 The full results rank-rank slope results and copula estimates are in Table A1.4 in Appendix 1.  Chetty, 
Hendren, Kline, and Saez (2014) estimate the rank-rank slope with tax data as 0.341, with the same 
caveats about their inclusion of households with zero income and no equivalence adjustment to 
household income. For context, they estimate the rank-rank slope in Denmark to be 0.180, implying a 
much lower degree of persistence in income rank across generations in Denmark than in either the 
United States or Mexico. 



17 

 

References 

Antman, Francisca, and David J. McKenzie. 2007. “Earnings Mobility and Measurement 
Error: A Pseudo-Panel Approach.” Economic Development and Cultural Change 56 
(1) (October): 125–161. doi:10.1086/520561. 

Banks, James, Richard Blundell, and Agar Brugiavini. 2001. “Risk Pooling, 
Precautionary Saving and Consumption Growth.” The Review of Economic Studies 
68 (4): 757–779. 

Behrman, Jere R., Alejandro Gaviria, Miguel Székely, Nancy Birdsall, and Sebastian 
Galiani. 2001. “Intergenerational Mobility in Latin America.” Economia 2 (1): 1–44. 

Bø, Erlend E., Peter J. Lambert, and Thor O. Thoresen. 2011. “Horizontal Inequity 
under a Dual Income Tax System: Principles and Measurement.” International Tax 
and Public Finance 19 (5): 625–640. 

Bonhomme, Stephane, and Jean-Marc Robin. 2009. “Assessing the Equalizing Force of 
Mobility Using Short Panels: France, 1990-2000.” The Review of Economic Studies 
76: 63–92. 

Cherubini, Umberto, Elisa Luciano, and Walter Vecchiato. 2004. Copula Methods in 
Finance. Wiley.com. 

Chetty, Raj, Nathaniel Hendren, Patrick Kline, and Emmanuel Saez. 2014. “Where Is 
the Land of Opportunity? The Geography of Intergenerational Mobility in the United 
States.” NBER Working Paper 19843. 

Chetty, Raj, Nathaniel Hendren, Patrick Kline, Emmanuel Saez, and Nicholas Turner. 
2014. “Is the United States Still a Land of Opportunity? Recent Trends in 
Intergenerational Mobility.” NBER Working Paper 19844. 

Cruces, Guillermo, Peter Lanjouw, Leonardo Lucchetti, Elizaveta Perova, Renos Vakis, 
and Mariana Viollaz. 2011. “Intra-Generational Mobility and Repeated Cross-
Sections: A Three-Country Validation Exercise.” World Bank Policy Research 
Working Paper 5916. 

Dang, Hai-Anh, and Peter Lanjouw. 2013. “Measuring Poverty Dynamics with Synthetic 
Panels Based on Cross-Sections.” World Bank Policy Research Working Paper 
6504. 

Dang, Hai-Anh, Peter Lanjouw, Jill Luoto, and David McKenzie. 2011. “Using Repeated 
Cross-Sections to Explore Movements in and out of Poverty.” World Bank Policy 
Research Working Paper 5550. 

Deaton, Angus. 1985. “Panel Data from Time Series of Cross-Sections.” Journal of 
Econometrics 30: 109–126. 

Demarta, Stefano, and Alexander J. McNeil. 2007. “The T Copula and Related 
Copulas.” International Statistical Review 73 (1): 111–129. 

Dunn, Christopher E. 2007. “The Intergenerational Transmission of Lifetime Earnings: 
Evidence from Brazil.” The BE Journal of Economic Analysis & Policy 7 (2). 

Elbers, Chris, Jean O. Lanjouw, and Peter Lanjouw. 2003. “Micro–Level Estimation of 
Poverty and Inequality.” Econometrica 71 (1): 355–364. 

Emran, M. Shahe, and Forhad Shilpi. 2011. “Intergenerational Occupational Mobility in 
Rural Economy.” The Journal of Human Resources 46 (2). 

———. 2012. “Gender, Geography and Generations Intergenerational Educational 
Mobility in Post-Reform India.” World Bank Policy Research Working Paper 6055. 



18 

 

Emran, M. Shahe, and Yan Sun. 2012. “Magical Transition? Intergenerational 
Educational and Occupational Mobility in Rural China”: 1988–2002. 

Fields, Gary S., and Mariana Viollaz. 2013. “Can the Limitations of Panel Datasets Be 
Overcome by Using Pseudo-Panels to Estimate Income Mobility?” 

Foster, James E., and Jonathan Rothbaum. 2014. “The Mobility Curve: Measuring the 
Impact of Mobility on Welfare.” 
http://home.gwu.edu/~jrothbau/Rothbaum_Jonathan_MobilityCurves.pdf. 

Guimaraes Ferreira, Sergio, and Fernando A. Veloso. 2006. “Intergenerational Mobility 
of Wages in Brazil.” Brazilian Review of Econometrics 26 (2): 181–211. 

Hertz, Tom. 2001. “Education, Inequality and Economic Mobility in South Africa.” PhD 
Dissertation. 

Hertz, Tom, Tamara Jayasundera, Patrizio Piraino, Sibel Selcuk, Nicole Smith, and 
Alina Verashchagina. 2007. “The Inheritance of Educational Inequality: 
International Comparisons and Fifty-Year Trends.” The BE Journal of Economic 
Analysis & Policy 7 (2). 

Hnatkovska, Viktoria, Amartya Lahiri, and Sourabh B. Paul. 2013. “Breaking the Caste 
Barrier Intergenerational Mobility in India.” Journal of Human Resources 48 (2): 
435–473. 

Jäntti, Markus, Eva Sierminska, and Philippe Van Kerm. 2012. “Modelling the Joint 
Distribution of Income and Wealth.” 

Jaworski, Piotr, Fabrizio Durante, Wolfgang Härdle, and Tomasz Rychlik, ed. 2010. 
Copula Theory and Its Applications. 

Madrian, Brigitte C., and Lars John Lefgren. 2000. “An Approach to Longitudinally 
Matching Current Population Survey (CPS) Respondents.” Journal of Economic 
and Social Measurement 26: 31–62. 

Mazumder, Bhashkar. 2005. “Fortunate Sons: New Estimates of Intergenerational 
Mobility in the United States Using Social Security Earnings Data.” Review of 
Economics and Statistics 87 (2): 235–255. 

Nimubona, Alain-Désiré, and Désiré Vencatachellum. 2007. “Intergenerational 
Education Mobility of Black and White South Africans.” Journal of Population 
Economics 20 (1): 149–182. 

Nunez, Javier I., and Leslie Miranda. 2010. “Intergenerational Income Mobility in a Less-
Developed, High-Inequality Context: The Case of Chile.” The BE Journal of 
Economic Analysis & Policy 10 (1). 

Quheng, Deng, Björn Gustafsson, and Li Shi. 2012. “Intergenerational Income 
Persistency in Urban China.” IZA Discussion Paper No. 6907. 

Torche, Florencia. 2005. “Unequal But Fluid: Social Mobility in Chile in Comparative 
Perspective.” American Sociological Review 70 (3): 422–450. 

Trivedi, Pravin K., and David M. Zimmer. 2006. Copula Modeling: An Introduction for 
Practitioners. Foundations and Trends in Econometrics. Vol. 1. 

US Census Bureau. 2013. “Estimating ASEC Variances with Replicate Weights.” 
thedataweb.rm.census.gov/ftp/cps_ftp.html. 

Velez Grajales, Roberto, Raymundo Campos Vazquez, and Juan Enrique Huerta 
Wong. 2013. “Informe Movilidad Social En Mexico 2013”. Mexico D.F., Mexico. 



19 

 

Vinh, Andrea, William E. Griffiths, and Duangkamon Chotikapanich. 2010. “Bivariate 
Income Distributions for Assessing Inequality and Poverty under Dependent 
Samples.” Economic Modelling 27 (6): 1473–1483. 

Zimmer, David M., and H. Youn Kim. 2012. “The Dependence Structure of Income 
Distribution.” Applied Economics 44 (27): 3573–3583. 

 
  



20 

 

Tables 

Table 1: OLS Regression Results for Log Income in the PSID-CNEF 

 2005 2007 

Years of Education 0.155*** 0.157*** 

 (0.005) (0.006) 

Age 0.0425*** 0.0590*** 

 (0.0136) (0.0157) 

Age squared -0.000313* -0.000538*** 

 (0.000171) (0.000189) 

Male 0.698*** 0.593*** 

 (0.029) (0.032) 

Black -0.362*** -0.429*** 

 (0.027) (0.030) 

Hispanic -0.579*** -0.435*** 

 (0.084) (0.093) 

Constant 6.66*** 6.45*** 

 (0.27) (0.33) 

R Squared 0.33 0.27 

N 4,704 4,704 

Notes: * p<0.1, ** p<0.05, *** p<0.01. 

Robust standard errors in parenthesis. 

 

 

Table 2: OLS Regression Results for Log Income in the CPS ASEC 

 2005 2006 

Education (High school excluded) 

Less than High School -0.455*** -0.419*** 

 (0.020) (0.018) 

Some College 0.189*** 0.186*** 

 (0.012) (0.012) 

College 0.534*** 0.542*** 

 (0.013) (0.013) 

Masters 0.679*** 0.692*** 

 (0.019) (0.019) 

Professional/PhD 0.941*** 0.964*** 

 (0.030) (0.029) 

Age 0.005 0.003 

 (0.006) (0.006) 

Age squared -0.000097 -0.000125* 

 (0.000073) (0.000072) 

Black -0.436*** -0.442*** 

 (0.048) (0.048) 

Hispanic -0.235*** -0.224*** 

 (0.014) (0.014) 

Constant 10.071*** 10.095*** 

 (0.115) (0.118) 

R Squared 0.21 0.21 

N 22,156 22,156 

Notes: * p<0.1, ** p<0.05, *** p<0.01. 

Robust standard errors in parenthesis. 
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Table 3: OLS Regression Results for Log Income in the NLSY79 

 Parents Children 
Years of Education 0.063*** 0.009*** 

 (0.002) (0.002) 

Urban 0.180*** 0.137*** 

 (0.023) (0.028) 

Regions (North East excluded) 

North Central 0.059** -0.186*** 

 (0.028) (0.035) 

South -0.047* -0.110*** 

 (0.027) (0.032) 

West 0.078*** -0.049 

 (0.031) (0.037) 

Race/Ethnicity (White excluded) 

Black -0.639*** -0.548*** 

 (0.026) (0.030) 

Hispanic -0.403*** -0.372*** 

 (0.029) (0.033) 

Other Non-White -0.448*** -0.158*** 

 (0.025) (0.037) 

Age -0.006*** 0.423* 

 (0.002) (0.217) 

Age squared 0.00011*** -0.01260* 

 (0.00004) (0.00675) 

Industry of Household Head (Retail excluded) 

Agriculture -0.148** -0.141 

 (0.067) (0.079) 

Mining -0.004 -0.090 

 (0.370) (0.150) 

Manufacturing -0.223* 0.113** 

 (0.100) (0.049) 

Transportation -0.018 0.233*** 

 (0.053) (0.037) 

Finance -0.014 0.337*** 

 (0.130) (0.053) 

Business Services 0.029 0.444*** 

 (0.099) (0.053) 

Personal Services -0.099 0.064 

 (0.077) (0.049) 

Recreation -0.201*** -0.223*** 

 (0.046) (0.061) 

Professional Services -0.186* 0.217 

 (0.099) (0.117) 

Other -0.246*** 0.261*** 

 (0.051) (0.037) 

Constant 9.54*** 6.69*** 

 (0.05) (1.73) 

R Squared 0.33 0.21 

N 5,005 5,005 

Notes: * p<0.1, ** p<0.05, *** p<0.01. 

Robust standard errors in parenthesis. 
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Table 4: OLS Regression Results for Log Income in the NLSY97 

 Parents Children 
Years of Education 0.066*** 0.059*** 

 (0.003) (0.003) 

Urban 0.105*** -0.010 

 (0.030) (0.032) 

Regions (North East excluded) 

North Central 0.094** -0.114*** 

 (0.042) (0.043) 

South 0.037 -0.039 

 (0.040) (0.040) 

West 0.065 0.005 

 (0.044) (0.044) 

Race/Ethnicity (White excluded) 

Black -0.797*** -0.625*** 

 (0.034) (0.033) 

Hispanic -0.599*** -0.221*** 

 (0.038) (0.036) 

Other Non-White -0.123* -0.109 

 (0.069) (0.069) 

Constant 9.37*** 9.75*** 

 (0.05) (0.06) 

R Squared 0.28 0.16 

N 4,685 4,685 

Notes: * p<0.1, ** p<0.05, *** p<0.01. 

Robust standard errors in parenthesis. 
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Table 5: Summary Statistics for ENIGH and Parent Cohort of EMOVI 

 

ENIGH84 

EMOVI06 

Parents ENIGH89 

EMOVI11 

Parents 

Age (in parent survey year) 40.4 43.6 40.4 47.9 

 (12.7) (9.8) (12.7) (9.4) 

Education (Primary education excluded) 

No or Some Primary 0.551 0.560 0.655 0.443 

Secondary 0.131 0.079 0.131 0.211 

University 0.055 0.027 0.004 0.058 

Occupation (Retail excluded) 

Professionals 0.016 0.013 0.028 0.027 

Technical 0.023 0.005 0.031 0.027 

Education 0.027 0.011 0.029 0.008 

Entertainment 0.010 0.008 0.008 0.002 

Directors 0.018 0.001 0.022 0.001 

Agriculture 0.319 0.325 0.263 0.209 

Industrial Directors 0.022 0.007 0.025 0.009 

Industrial Workers 0.226 0.250 0.224 0.261 

Administrative 0.050 0.014 0.050 0.010 

Retail (Ambulatory) 0.011 0.011 0.019 0.012 

Service 0.044 0.027 0.046 0.034 

Domestic Service 0.013 0.018 0.011 0.000 

Transportation 0.051 0.130 0.058 0.092 

Region (Northern excluded) 

Central 0.412 0.332 0.356 0.274 

West 0.117 0.143 0.128 0.056 

East 0.141 0.160 0.140 0.103 

South 0.102 0.138 0.168 0.118 

City Size (Large, > 100,000 excluded) 

Very Small (≤10,000) 0.099 0.118 0.057 0.065 

Small (10,001-35,000) 0.238 0.220 0.168 0.156 

Medium (35,001-100,000) 0.228 0.174 0.221 0.187 

Owned Car 0.146 0.204 0.170 0.234 

Indoor Plumbing 0.616 0.491 0.704 0.580 

Electricity in Home 0.872 0.717 0.884 0.906 

Owned Telephone 0.143 0.183 0.152 0.162 

Owned TV 0.674 0.532 0.783 0.807 

N 3,076 1,388 7,307 1,042 

Notes: Standard deviation for household head age in parenthesis.  All other variables are binary and the standard 

deviation is equal to (𝑝(1 − 𝑝))
1

2. 
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Table 6: OLS Regression Results for Log Income in the ENIGH and EMOVI 

 ENIGH84-EMOVI06 ENIGH89-EMOVI11 

 Parents (1984) Children (2006) Parents (1989) Children (2011) 

Age 0.0052 0.0318 0.0049 -0.0239 

 (0.0043) (0.1455) (0.0030) (0.1838) 

Age squared 0.000021 0.000571 0.000020 0.000276 

 (0.000046) (0.002110) (0.000031) (0.002688) 

Education (Primary education excluded) 

No/Some Primary -0.198*** -0.151*** -0.170*** -0.025 

 (0.027) (0.056) (0.020) (0.079) 

Secondary 0.106*** 0.083** 0.177*** 0.169*** 

 (0.035) (0.037) (0.027) (0.052) 

Tertiary 0.331*** 0.647*** 0.575*** 0.544*** 

 (0.062) (0.077) (0.108) (0.098) 

Occupation (Retail excluded) 

Professionals 0.116 0.230* 0.252*** 0.407*** 

 (0.092) (0.114) (0.051) (0.121) 

Technical 0.030 0.184* 0.045 0.331 

 (0.071) (0.103) (0.043) (0.165) 

Education 0.008 0.287* 0.113*** 0.165 

 (0.076) (0.137) (0.045) (0.168) 

Entertainment -0.108 0.173 0.185** -0.016 

 (0.102) (0.179) (0.074) (0.317) 

Directors 0.447*** 0.229 0.460*** 0.618*** 

 (0.081) (0.179) (0.053) (0.226) 

Agriculture -0.132*** -0.329*** -0.112*** -0.079 

 (0.034) (0.070) (0.024) (0.093) 

Industrial Directors 0.185*** 0.208* 0.269*** 0.176 

 (0.071) (0.132) (0.050) (0.165) 

Industrial Workers -0.082*** 0.069* -0.018 0.099* 

 (0.032) (0.041) (0.022) (0.058) 

Administrative 0.053 0.083 0.151*** 0.192*** 

 (0.051) (0.077) (0.036) (0.086) 

Retail (Ambulatory) -0.095 -0.075 -0.079 -0.209* 

 (0.083) (0.135) (0.056) (0.135) 

Service -0.076* -0.067 0.015 0.157** 

 (0.049) (0.072) (0.037) (0.087) 

Domestic Service -0.414*** -0.317*** -0.002 -0.157 

 (0.095) (0.110) (0.062) (0.119) 

Transportation 0.010 -0.069 0.064** 0.087 

 (0.047) (0.067) (0.033) (0.213) 

Region (Northern excluded) 

Central -0.145*** -0.159*** -0.166*** -0.094* 

 (0.026) (0.042) (0.019) (0.061) 

West -0.138*** 0.033 -0.133*** -0.233*** 

 (0.033) (0.044) (0.022) (0.074) 

East -0.181*** -0.225*** -0.211*** -0.152** 

 (0.032) (0.067) (0.023) (0.068) 

South -0.045 -0.380*** -0.216*** -0.226*** 

 (0.032) (0.069) (0.024) (0.067) 
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Table 6: OLS Regression Results for Log Income in the ENIGH and EMOVI, continued 

 ENIGH84-EMOVI06 ENIGH89-EMOVI11 
 Parents (1984) Children (2006) Parents (1989) Children (2011) 

City Size (Large, > 100k excluded) 

Very Small (≤10k) -0.127*** -0.114 -0.302*** -0.114 

 (0.041) (0.078) (0.033) (0.102) 

Small (10k-35k) -0.192*** -0.210*** -0.217*** -0.124** 

 (0.028) (0.049) (0.022) (0.059) 

Medium (35k-100k) -0.035 -0.053 -0.146*** -0.195*** 

 (0.027) (0.053) (0.021) (0.051) 

Owned Car 0.387*** 0.232*** 0.365*** 0.284*** 

 (0.032) (0.036) (0.021) (0.044) 

Indoor Plumbing 0.200*** 0.279*** 0.180*** 0.226*** 

 (0.024) (0.051) (0.018) (0.053) 

Electricity in Home 0.045 0.379** 0.126*** -0.141 

 (0.035) (0.132) (0.025) (0.141) 

Owned Telephone 0.256*** 0.157*** 0.362*** 0.022 

 (0.033) (0.036) (0.021) (0.047) 

Owned TV 0.273*** 0.239*** 0.302*** 0.140 

 (0.027) (0.071) (0.021) (0.132) 

Constant 7.40*** 6.5*** 7.2*** 7.9** 

 (0.10) (2.50) (0.07) (3.12) 

R Squared 0.50 0.41 0.50 0.27 

N 3,076 1,388 7,307 1,042 

Notes: * p<0.1, ** p<0.05, *** p<0.01. 

Robust standard errors in parenthesis. 

 

 

Table 7: Copula Estimate of Quintile Transition Matrices with Standard Errors 

Cohort 1: 1984-2006 (𝝆𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 = 𝟎. 𝟏𝟐)  Cohort 2: 1989-2011 (𝝆𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 = 𝟎. 𝟏𝟖) 

Quintiles Child  Quintiles Child 

Parent 1
st

 2
nd

 3
rd

 4
th

 5
th

  Parent 1
st

 2
nd

 3
rd

 4
th

 5
th

 

1
st

 34.6 26.2 17.5 13.6 7.9  1
st

 37.9 23.8 17.6 12.6 8.0 

 (2.5) (2.2) (2.0) (1.6) (1.5)   (2.9) (2.6) (2.6) (2.1) (2.0) 

2
nd

 25.6 24.1 19.3 18.1 13.0  2
nd

 25.3 24.5 19.8 17.9 12.2 

 (2.5) (2.0) (2.2) (2.1) (1.8)   (2.4) (2.7) (2.6) (2.3) (2.1) 

3
rd

 19.0 20.9 21.0 20.9 18.0  3
rd

 17.7 21.9 21.4 22.1 17.1 

 (2.4) (2.2) (2.1) (2.2) (1.9)   (2.2) (2.6) (2.9) (2.8) (2.2) 

4
th

 13.1 17.2 21.6 23.9 24.4  4
th

 12.0 17.8 21.9 24.4 23.6 

 (1.8) (2.2) (2.4) (2.3) (2.0)   (2.1) (2.2) (2.5) (2.3) (2.3) 

5
th

 7.4 11.8 20.4 23.7 36.9  5
th

 7.0 11.9 19.5 22.8 38.5 

 (1.6) (1.7) (2.0) (1.8) (2.4)   (1.5) (1.9) (2.3) (2.2) (2.7) 
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Table 8: Copula Estimate of Decile Transition Matrices with Standard Errors 

Cohort 1: 1984-2006 (𝝆𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 = 𝟎. 𝟏𝟐) 

Deciles Child 

Parent 1 2 3 4 5 6 7 8 9 10 

1 21.7 15.5 14.8 12.2 7.8 9.0 7.0 5.0 3.9 2.5 

 (3.3) (2.7) (2.7) (2.7) (2.2) (2.4) (2.2) (1.6) (1.4) (1.2) 

2 17.2 14.8 13.8 11.6 8.5 9.6 8.9 6.3 5.6 3.9 

 (3.0) (2.5) (2.7) (2.3) (2.3) (2.2) (2.2) (1.9) (1.8) (1.6) 

3 13.9 13.2 13.5 11.8 8.8 9.6 9.8 7.7 6.9 4.9 

 (2.8) (2.9) (2.5) (2.5) (2.3) (2.4) (2.6) (2.2) (2.2) (1.6) 

4 11.6 12.5 12.0 10.9 10.2 10.0 9.8 8.9 8.2 6.0 

 (2.6) (3.2) (2.8) (2.4) (2.4) (2.6) (2.2) (2.7) (2.4) (2.1) 

5 9.6 11.1 10.7 11.0 10.6 10.1 10.1 9.5 9.8 7.0 

 (2.5) (2.3) (2.4) (2.6) (2.6) (2.2) (2.1) (2.3) (2.6) (2.1) 

6 7.7 9.7 9.8 10.3 11.0 10.4 11.2 10.9 11.1 8.1 

 (2.2) (2.3) (2.4) (2.3) (2.5) (2.5) (2.8) (2.5) (2.5) (2.3) 

7 6.5 8.4 8.4 9.5 11.2 10.6 11.6 11.7 11.5 10.7 

 (1.9) (2.3) (2.4) (2.6) (2.8) (2.4) (2.5) (2.9) (2.3) (2.3) 

8  5.0 6.4 7.5 8.9 10.8 10.6 11.5 12.9 13.2 13.3 

 (1.8) (2.0) (2.1) (2.2) (2.6) (2.7) (2.7) (2.6) (2.5) (2.6) 

9  3.5 5.1 5.4 7.6 10.8 10.8 11.0 14.2 14.9 16.8 

 (1.6) (1.8) (1.7) (2.2) (2.3) (2.4) (2.5) (2.4) (2.9) (2.6) 

10  2.8 3.4 4.2 6.3 9.7 9.6 9.1 13.0 15.1 27.0 

 (1.5) (1.6) (1.6) (1.9) (2.2) (2.1) (2.2) (2.7) (2.8) (2.9) 

      

Cohort 2: 1989-2011 (𝝆𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 = 𝟎. 𝟏𝟖) 

Deciles Child 

Parent 1 2 3 4 5 6 7 8 9 10 

1 28.0 14.1 12.1 12.1 8.3 7.8 5.3 5.3 3.8 3.0 

 (4.3) (3.5) (2.9) (3.0) (2.4) (2.2) (2.3) (2.0) (2.0) (1.8) 

2 19.3 14.3 11.8 11.7 9.6 9.4 7.5 7.1 5.6 3.6 

 (3.5) (2.9) (2.5) (3.2) (2.4) (2.7) (2.1) (2.4) (2.2) (1.8) 

3 14.0 13.3 12.4 12.5 9.6 9.6 8.7 8.0 6.9 4.6 

 (3.0) (3.2) (3.1) (3.0) (2.5) (2.4) (2.5) (2.6) (2.3) (1.8) 

4 10.9 12.5 12.5 11.5 10.2 10.2 10.1 9.0 7.5 5.3 

 (3.0) (2.9) (3.0) (2.9) (2.9) (3.1) (2.5) (2.6) (2.2) (2.0) 

5 8.3 10.9 11.7 11.1 10.5 10.6 10.5 10.6 8.6 7.0 

 (2.4) (2.9) (2.8) (2.8) (3.0) (2.8) (2.8) (2.9) (2.7) (2.5) 

6 6.4 9.8 10.7 10.3 10.7 11.1 11.8 11.3 10.0 8.6 

 (2.0) (2.5) (2.5) (3.1) (3.2) (2.9) (2.9) (3.0) (3.1) (2.3) 

7 4.9 8.3 9.3 9.5 10.4 11.7 12.2 11.9 10.7 10.7 

 (2.0) (2.3) (2.6) (2.3) (3.0) (3.1) (2.9) (3.1) (3.0) (2.8) 

8  3.4 7.3 8.6 8.3 10.5 11.3 11.9 12.7 12.9 12.9 

 (1.7) (2.3) (2.5) (2.7) (2.7) (3.2) (2.8) (2.8) (3.3) (3.3) 

9  2.8 5.4 6.9 7.3 10.7 10.7 11.3 12.5 14.7 17.2 

 (1.7) (2.1) (2.4) (2.4) (2.9) (2.8) (2.7) (3.6) (3.1) (3.3) 

10  1.8 4.0 3.9 5.5 9.1 8.6 10.5 11.3 18.8 26.3 

 (1.2) (1.5) (1.8) (1.9) (2.4) (2.5) (2.5) (2.9) (3.1) (3.1) 
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Figures 

Figure 1: Mobility Curve Example 

 
 

Source: Foster and Rothbaum 2014 

Notes: Example of mobility curve first-order dominance ordering in two societies, 𝐴 and 𝐵.  At each 

cutoff (𝑐) on the x-axis, the mobility curve shows the share of the population that is upwardly mobile 

(𝑦𝑖1 < 𝑐 and 𝑦𝑖2 ≥ 𝑐) above the x-axis and the share that is downwardly mobile (𝑦𝑖1 ≥ 𝑐 and 𝑦𝑖2 < 𝑐) 

below the x-axis. Society 𝐵 has more upward mobility than 𝐴 (1 → 3 vs. 1 → 2) which is also shown in 

the mobility curve by the fact that upward mobility for 𝐵 is greater than or equal to upward mobility for 

𝐴 at all cutoffs.  The same is true for downward mobility.  Thus, 𝐵 first-order mobility dominates 𝐴 in 

both upward and downward mobility which also means that the welfare gain (loss) due to upward 

(downward) mobility is greater in 𝐵 than 𝐴. 
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Figure 2: US PSID-CNEF 2005-2007 Synthetic vs. True Mobility 

  
 

 

 

 

Figure 3: US CPS ASEC Panel 2005-2006 Synthetic vs. True Mobility of Income 

  
 

 

Notes: True upward and downward mobility curve with 95% confidence intervals and DLLM and Guassian copula synthetic panel estimates using the known correlation of the 

OLS errors 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 .  At each cutoff (𝑐) on the x-axis, the mobility curve shows the share of the population that is upwardly mobile (𝑦𝑖1 < 𝑐 and 𝑦𝑖2 ≥ 𝑐) above the x-axis and the 

share that is downwardly mobile (𝑦𝑖1 ≥ 𝑐 and 𝑦𝑖2 < 𝑐) below the x-axis.  The DLLM estimate underestimates upward and downward mobility at low income cutoffs and 

overestimates them at higher income cutoffs.  However, the estimate of transitions into and out of poverty (mobility at the poverty line) are very accurate. 
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Figure 4: NLSY79 Intergenerational Mobility of Income 

Comparison of True Mobility to DLLM and Gaussian Copula at 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 = 𝟎. 𝟐𝟒 

 
 

 

Figure 5: NLSY97 Intergenerational Mobility of Income 

Comparison of True Mobility to DLLM and Gaussian Copula at 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 = 𝟎. 𝟐𝟒 

  
 

 

Notes: True upward and downward mobility curve with 95% confidence intervals and DLLM and Guassian copula synthetic panel estimates using the known correlation of the 

OLS errors 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 .  At each cutoff (𝑐) on the x-axis, the mobility curve shows the share of the population that is upwardly mobile (𝑦𝑖1 < 𝑐 and 𝑦𝑖2 ≥ 𝑐) above the x-axis and the 

share that is downwardly mobile (𝑦𝑖1 ≥ 𝑐 and 𝑦𝑖2 < 𝑐) below the x-axis.  The DLLM estimate underestimates upward and downward mobility at low income cutoffs and 

overestimates them at higher income cutoffs.  However, the estimate of transitions into and out of poverty (mobility at the poverty line) are very accurate. 
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Figure 6: Complete Mobility Curve Results for NLSY79 with Quartile Decomposition 

Comparison of True Mobility to DLLM and Gaussian Copula at 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 = 𝟎. 𝟐𝟒 

   
Notes: True upward and downward mobility curve and quartile decomposition for NLSY79 with 95% confidence intervals and DLLM and Guassian copula 

synthetic panel estimates using the known correlation of the OLS errors 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 .  At each cutoff (𝑐) on the x-axis, the mobility curve shows the share of the 

population that is upwardly mobile (𝑦𝑖1 < 𝑐 and 𝑦𝑖2 ≥ 𝑐) above the x-axis and the share that is downwardly mobile (𝑦𝑖1 ≥ 𝑐 and 𝑦𝑖2 < 𝑐) below the x-axis.   
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Figure 7: Mobility Curve and Quartile Decomposition Estimate of Intergenerational Mobility in Mexico 

Using Copula with Bounds 

 
Notes: Copula estimate of the upward and downward mobility curve and quartile decomposition for the ENIGH84-EMOVI06 (born 1966-1976) and 

ENIGH89-EMOVI11 (born 1971-1981) using the estimated correlation of the OLS errors 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑and lower and upper bounds.  At each cutoff (𝑐) 

on the x-axis, the mobility curve shows the share of the population that is upwardly mobile (𝑦𝑖1 < 𝑐 and 𝑦𝑖2 ≥ 𝑐) above the x-axis and the share that 

is downwardly mobile (𝑦𝑖1 ≥ 𝑐 and 𝑦𝑖2 < 𝑐) below the x-axis. 
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Figure 8: Quartile Decomposition of Rank Mobility Curve Estimate of Intergenerational Mobility in Mexico Using Copula 

with Bounds 

 
 

Notes: Copula estimate of the rank upward and downward mobility curve and quartile decomposition for the ENIGH84-EMOVI06 (born 1966-1976) and 

ENIGH89-EMOVI11 (born 1971-1981) using the estimated correlation of the OLS errors 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑and lower and upper bounds.  At each cutoff (𝑐) on the x-

axis, the mobility curve shows the share of the population that is upwardly mobile (𝐹1
−1(𝑦𝑖1) < 𝑐 and 𝐹2

−1(𝑦𝑖2) ≥ 𝑐) above the x-axis and the share that is 

downwardly mobile (𝐹1
−1(𝑦𝑖1) ≥ 𝑐 and 𝐹2

−1(𝑦𝑖2) < 𝑐) below the x-axis. 
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Appendix 1. Synthetic Panels Estimates of Other Measures of Mobility 

Table A1.1: Comparison of True Intergenerational Elasticity to Synthetic Panel Estimates 

 True DLLM Copula 

PSID-CNEF 

(2005-2007) 
0.76 

𝜌𝐿 = 0.63 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.78 𝜌𝐻 = 0.88 𝜌𝐿 = 0.63 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.78 𝜌𝐻 = 0.88 

0.77 0.87 0.94 0.71 0.86 0.96 

CPS ASEC 

(2005-2006) 
0.67 

𝜌𝐿 = 0.58 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.68 𝜌𝐻 = 0.78 𝜌𝐿 = 0.58 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.68 𝜌𝐻 = 0.78 

0.67 0.75 0.82 0.63 0.71 0.79 

NLSY79 0.44 
𝜌𝐿 = 0.09 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.24 𝜌𝐻 = 0.39 𝜌𝐿 = 0.09 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.24 𝜌𝐻 = 0.39 

0.24 0.35 0.47 0.32 0.43 0.54 

NLSY97 0.33 
𝜌𝐿 = 0.09 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.24 𝜌𝐻 = 0.39 𝜌𝐿 = 0.09 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.24 𝜌𝐻 = 0.39 

0.21 0.31 0.41 0.23 0.33 0.44 

ENIGH84-

EMOVI06 

 𝜌𝐿 = 0.05 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.12 𝜌𝐻 = 0.30 𝜌𝐿 = 0.05 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.12 𝜌𝐻 = 0.30 

 0.26 0.30 0.42 0.32 0.35 0.45 

ENIGH89-

EMOVI11 

 𝜌𝐿 = 0.05 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.18 𝜌𝐻 = 0.30 𝜌𝐿 = 0.05 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.18 𝜌𝐻 = 0.30 

 0.23 0.27 0.37 0.28 0.33 0.40 

 

 

 

Table A1.2: Comparison of True Log Income Correlation to Synthetic Panel Estimates 

 True DLLM Copula 

PSID-CNEF 

(2005-2007) 
0.70 

𝜌𝐿 = 0.63 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.78 𝜌𝐻 = 0.88 𝜌𝐿 = 0.63 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.78 𝜌𝐻 = 0.88 

0.74 0.84 0.91 0.65 0.78 0.88 

CPS ASEC 

(2005-2006) 
0.67 

𝜌𝐿 = 0.58 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.68 𝜌𝐻 = 0.78 𝜌𝐿 = 0.58 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.68 𝜌𝐻 = 0.78 

0.67 0.75 0.83 0.65 0.73 0.81 

NLSY79 0.36 
𝜌𝐿 = 0.09 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.24 𝜌𝐻 = 0.39 𝜌𝐿 = 0.09 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.24 𝜌𝐻 = 0.39 

0.20 0.31 0.42 0.25 0.35 0.46 

NLSY97 0.31 
𝜌𝐿 = 0.09 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.24 𝜌𝐻 = 0.39 𝜌𝐿 = 0.09 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.24 𝜌𝐻 = 0.39 

0.20 0.32 0.44 0.20 0.32 0.43 

ENIGH84-

EMOVI06 

 𝜌𝐿 = 0.05 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.12 𝜌𝐻 = 0.30 𝜌𝐿 = 0.05 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.12 𝜌𝐻 = 0.30 

 0.31 0.34 0.44 0.27 0.39 0.49 

ENIGH89-

EMOVI11 

 𝜌𝐿 = 0.05 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.18 𝜌𝐻 = 0.30 𝜌𝐿 = 0.05 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.18 𝜌𝐻 = 0.30 

 0.27 0.30 0.41 0.36 0.42 0.48 

 

Notes: These tables compare the true log income correlation with the estimate from DLLM and Gaussian copula-based synthetic 

panels using the known OLS error correlation (𝜌𝐴𝑐𝑡𝑢𝑎𝑙) and a plausible lower and upper bound of possible correlations (𝜌𝐿 and 

𝜌𝐻).  For the ENIGH84-EMOVI06 (born 1966-1976) and ENIGH89-EMOVI11 (born 1971-1981) estimates of 

intergenerational mobility in Mexico, the true 𝜌 is not known, and we specify a best estimate of the error correlation 𝜌𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒. 
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Table A1.3: Comparison of Quintile Transition Matrices 
        

PSID-CNEF (2005-2007) 
 True        

Parent 

Quintile 

Child Quintile        

1st 2nd 3rd 4th 5th        

1st 65.7 22.5 7.4 3.7 0.4        

2nd 23.0 47.9 22.1 6.0 1.3        

3rd 5.8 21.6 45.5 20.0 7.2        

4th 3.1 5.7 21.2 52.0 17.9        

5th 2.4 2.3 3.7 18.1 73.5        
             

 DLLM [𝝆𝑳 = 𝟎. 𝟔𝟑, 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 = 𝟎. 𝟕𝟖, 𝝆𝑯 = 𝟎. 𝟖𝟖]   Copula [𝝆𝑳 = 𝟎. 𝟔𝟑, 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 = 𝟎. 𝟕𝟖, 𝝆𝑯 = 𝟎. 𝟖𝟖] 
Parent 

Quintile 

Child Quintile  Parent 

Quintile 

Child Quintile 

1st 2nd 3rd 4th 5th  1st 2nd 3rd 4th 5th 

1st 60.1, 68.9, 76.9 25.1, 23.7, 20.6 10.7, 6.3, 2.3 3.5, 0.9, 0.1 0.5, 0.0, 0.0  1st 55.5, 66.1, 74.5 25.4, 24.0, 21.5 12.4, 7.6, 3.4 5.4, 2.0, 0.4 1.2, 0.2, 0.0 

2nd 25.3, 24.0, 20.4 32.9, 39.6, 49.8 24.5, 26.1, 25.5 13.3, 9.3, 4.2 3.9, 1.0, 0.1  2nd 24.9, 22.8, 20.4 31.2, 37.8, 46.4 24.5, 26.0, 26.4 14.6, 11.5, 6.4 4.7, 1.9, 0.4 

3rd 10.6, 6.0, 2.4 24.9, 26.3, 25.1 28.5, 35.1, 44.6 24.8, 26.0, 25.5 11.2, 6.6, 2.5  3rd 12.3, 8.2, 4.2 23.8, 24.9, 24.8 27.8, 33.3, 40.7 24.3, 25.4, 26.4 11.8, 8.1, 3.9 

4th 3.3, 0.9, 0.1 13.5, 9.4, 4.5 25.1, 26.0, 25.1 32.4, 39.4, 49.0 25.8, 24.2, 21.3  4th 5.7, 2.5, 0.7 14.5, 11.0, 6.8 23.9, 25.4, 25.7 30.6, 37.1, 45.0 25.3, 24.0, 21.9 

5th 0.5, 0.1, 0.0 3.6, 1.0, 0.1 11.2, 6.4, 2.5 26.0, 24.4, 21.2 58.8, 68.3, 76.3  5th 1.5, 0.3, 0.0 5.0, 2.2, 0.5 11.5, 7.8, 4.0 25.0, 24.0, 21.7 57.1, 65.8, 73.9 
        

CPS ASEC (2005-2006) 
 True        

Parent 

Quintile 

Child Quintile        

1st 2nd 3rd 4th 5th        

1st 64.6 21.3 8.0 3.7 2.4        

2nd 21.6 43.0 20.7 9.6 5.1        

3rd 7.8 21.0 40.8 20.6 9.9        

4th 3.7 9.0 21.2 44.7 21.5        

5th 2.3 5.8 9.3 21.3 61.2        
             

 DLLM [𝝆𝑳 = 𝟎. 𝟔𝟑, 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 = 𝟎. 𝟕𝟖, 𝝆𝑯 = 𝟎. 𝟖𝟖]   Copula [𝝆𝑳 = 𝟎. 𝟔𝟑, 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 = 𝟎. 𝟕𝟖, 𝝆𝑯 = 𝟎. 𝟖𝟖] 
Parent 

Quintile 

Child Quintile  Parent 

Quintile 

Child Quintile 

1st 2nd 3rd 4th 5th  1st 2nd 3rd 4th 5th 

1st 54.5, 60.3, 67.1 26.0, 25.5, 24.4 13.0, 10.5, 7.2 5.4, 3.3, 1.3 1.2, 0.4, 0.1  1st 54.5, 61.3, 68.3 25.3, 24.8, 23.4 12.3, 9.9, 6.7 5.5, 3.4, 1.5 1.4, 0.6, 0.1 

2nd 26.0, 25.5, 24.4 29.6, 33.0, 38.2 23.7, 24.8, 25.9 15.3, 13.4, 10.2 5.4, 3.3, 1.3  2nd 26.0, 25.4, 23.8 30.2, 33.5, 39.1 23.5, 24.5, 25.3 14.7, 13.1, 10.3 5.6, 3.5, 1.6 

3rd 12.9, 10.5, 7.2 23.7, 24.8, 25.9 26.7, 29.4, 34.0 23.7, 24.8, 25.8 13.0, 10.5, 7.2  3rd 12.4, 9.8, 6.6 24.1, 25.0, 25.7 27.0, 29.9, 34.4 23.6, 24.6, 25.6 13.0, 10.7, 7.7 

4th 5.4, 3.3, 1.3 15.3, 13.5, 10.2 23.7, 24.8, 25.8 29.7, 33.0, 38.2 26.0, 25.4, 24.5  4th 5.0, 3.1, 1.3 15.0, 13.2, 10.3 24.1, 25.1, 26.0 30.1, 33.1, 38.0 25.9, 25.5, 24.5 

5th 1.2, 0.4, 0.1 5.5, 3.3, 1.4 13.0, 10.5, 7.2 26.0, 25.5, 24.5 54.4, 60.3, 66.9  5th 1.2, 0.5, 0.1 5.5, 3.4, 1.5 13.1, 10.7, 7.7 26.1, 25.7, 24.6 54.1, 59.7, 66.1 

 

Notes: This table compares the true quintile transition matrix with the estimates from DLLM and Gaussian copula-based synthetic panels using the known OLS error correlation (𝜌𝐴𝑐𝑡𝑢𝑎𝑙) and a 

plausible lower and upper bound of possible correlations (𝜌𝐿 and 𝜌𝐻).  Synthetic panel estimates for each quintile to quintile transition are for 𝜌𝐿, 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 , 𝜌𝐻.  The 𝜌𝐴𝑐𝑡𝑢𝑎𝑙  standard errors were 

generated by bootstrap with 100 replications. 

  True value lies within 

95%  confidence interval  

of 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 estimate 

True value lies within 

[𝝆𝑳,𝝆𝑯] range 

True Value lies within 

95% confidence of 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 
and [𝝆𝑳,𝝆𝑯] range 
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Table A1.3: Comparison of Quintile Transition Matrices, continued 
        

NLSY79 
 True        

Parent 

Quintile 

Child Quintile        

1st 2nd 3rd 4th 5th        

1st 43.2 24.8 16.0 10.6 5.3        

2nd 22.8 24.2 22.9 16.8 13.3        

3rd 13.8 21.6 24.2 21.6 18.9        

4th 13.0 16.7 18.7 26.4 25.2        

5th 7.1 12.9 18.2 24.4 37.5        
             

 DLLM [𝝆𝑳 = 𝟎. 𝟔𝟑, 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 = 𝟎. 𝟕𝟖, 𝝆𝑯 = 𝟎. 𝟖𝟖]   Copula [𝝆𝑳 = 𝟎. 𝟔𝟑, 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 = 𝟎. 𝟕𝟖, 𝝆𝑯 = 𝟎. 𝟖𝟖] 
Parent 

Quintile 

Child Quintile  Parent 

Quintile 

Child Quintile 

1st 2nd 3rd 4th 5th  1st 2nd 3rd 4th 5th 

1st 29.8, 34.6, 39.8 22.6, 23.6, 24.7 19.2, 18.4, 17.4 16.0, 14.3, 12.0 12.3, 9.1, 6.0  1st 33.2, 38.5, 44.0 22.3, 23.1, 23.6 19.0, 17.6, 16.6 14.9, 12.9, 10.5 10.6, 7.8, 5.2 

2nd 22.3, 23.6, 24.7 21.2, 22.3, 23.8 20.4, 20.5, 21.3 19.2, 18.9, 18.0 16.9, 14.8, 12.1  2nd 23.6, 24.3, 25.3 21.7, 22.9, 24.4 20.3, 21.0, 21.2 18.5, 18.3, 17.7 15.9, 13.5, 11.5 

3rd 18.9, 18.3, 17.4 19.9, 20.6, 21.4 20.4, 21.3, 21.8 20.4, 20.6, 21.4 20.4, 19.2, 18.0  3rd 18.6, 17.8, 16.3 20.5, 20.8, 21.5 20.4, 20.9, 22.1 20.9, 21.4, 22.2 19.6, 19.1, 17.9 

4th 16.1, 14.2, 11.8 19.0, 18.5, 18.0 20.1, 20.7, 21.3 21.6, 22.5, 23.9 23.1, 24.1, 25.1  4th 14.4, 12.4, 9.9 19.0, 18.6, 18.4 20.4, 21.1, 21.7 22.4, 23.1, 24.6 23.8, 24.8, 25.4 

5th 12.8, 9.4, 6.3 17.3, 15.0, 12.1 19.8, 19.1, 18.2 22.9, 23.7, 24.7 27.3, 32.8, 38.8  5th 10.1, 6.9, 4.4 16.6, 14.6, 12.1 20.0, 19.4, 18.4 23.3, 24.3, 25.0 30.2, 34.9, 40.1 
        

NLSY97 
 True        

Parent 

Quintile 

Child Quintile        

1st 2nd 3rd 4th 5th        

1st 39.9 22.8 17.3 11.4 8.5        

2nd 21.7 25.7 22.1 19.3 11.3        

3rd 17.3 22.5 21.5 19.7 19.1        

4th 11.5 16.5 24.3 23.9 23.6        

5th 9.5 12.6 14.8 25.7 37.6        
             

 DLLM [𝝆𝑳 = 𝟎. 𝟔𝟑, 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 = 𝟎. 𝟕𝟖, 𝝆𝑯 = 𝟎. 𝟖𝟖]   Copula [𝝆𝑳 = 𝟎. 𝟔𝟑, 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 = 𝟎. 𝟕𝟖, 𝝆𝑯 = 𝟎. 𝟖𝟖] 
Parent 

Quintile 

Child Quintile  Parent 

Quintile 

Child Quintile 

1st 2nd 3rd 4th 5th  1st 2nd 3rd 4th 5th 

1st 30.0, 35.0, 40.9 22.5, 24.0, 24.9 18.9, 18.4, 17.0 16.1, 13.6, 11.5 12.4, 8.9, 5.7  1st 30.1, 35.5, 41.4 22.1, 23.3, 24.1 18.9, 18.2, 16.8 16.1, 13.8, 11.7 12.7, 9.1, 6.0 

2nd 22.6, 23.9, 24.9 21.4, 22.4, 24.3 20.3, 20.6, 21.4 18.9, 18.6, 17.7 16.8, 14.6, 11.7  2nd 23.4, 24.2, 25.2 21.7, 22.7, 24.2 20.2, 20.5, 21.3 18.6, 18.4, 17.6 16.0, 14.2, 11.8 

3rd 18.6, 18.1, 17.2 20.1, 20.6, 21.4 20.4, 21.0, 22.3 20.6, 21.1, 21.3 20.3, 19.2, 17.8  3rd 18.8, 18.0, 16.8 20.1, 20.7, 21.6 20.6, 21.4, 22.3 20.4, 20.9, 21.6 20.1, 19.0, 17.7 

4th 15.9, 13.9, 11.2 18.7, 18.2, 17.6 20.6, 20.9, 21.6 21.7, 22.6, 24.4 23.1, 24.4, 25.2  4th 15.6, 13.4, 11.0 18.9, 18.4, 18.1 20.6, 21.1, 21.8 21.7, 22.9, 24.2 23.2, 24.2, 25.0 

5th 12.8, 9.1, 5.8 17.2, 14.8, 11.9 19.9, 19.1, 17.6 22.7, 24.1, 25.2 27.3, 32.8, 39.5  5th 12.1, 8.8, 5.5 17.1, 14.8, 12.1 19.6, 18.8, 17.9 23.2, 24.0, 24.9 27.9, 33.4, 39.5 

 

Notes: This table compares the true quintile transition matrix with the estimates from DLLM and Gaussian copula-based synthetic panels using the known OLS error correlation (𝜌𝐴𝑐𝑡𝑢𝑎𝑙) and a 

plausible lower and upper bound of possible correlations (𝜌𝐿 and 𝜌𝐻). Synthetic panel estimates for each quintile to quintile transition are for 𝜌𝐿 , 𝜌𝐴𝑐𝑡𝑢𝑎𝑙 , 𝜌𝐻.  The 𝜌𝐴𝑐𝑡𝑢𝑎𝑙  standard errors were 

generated by bootstrap with 100 replications. 

  True value lies within 

95%  confidence interval  

of 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 estimate 

True value lies within 
[𝝆𝑳,𝝆𝑯] range 

True Value lies within 

95% confidence of 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 
and [𝝆𝑳,𝝆𝑯] range 



Table A1.4: Rank-Rank Slope 

PSID-CNEF (𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.78) CPS ASEC (𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.68) 

𝜌 True DLLM Copula 𝜌 True DLLM Copula 

0.63 0.820 0.737 0.678 0.58 0.720 0.655 0.644 

0.68 0.770 0.712 0.63 0.694 0.682 

0.73 0.805 0.745 0.68 0.734 0.721 

0.78 0.841 0.783 0.73 0.774 0.761 

0.83 0.875 0.823 0.78 0.815 0.802 

0.88 0.912 0.865     

        

NLSY79 (𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.24) NLSY97 (𝜌𝐴𝑐𝑡𝑢𝑎𝑙 = 0.24) 

𝜌 True DLLM Copula 𝜌 True DLLM Copula 

0.09 0.418 0.218 0.288 0.09 0.403 0.222 0.243 

0.14 0.248 0.321 0.14 0.258 0.279 

0.19 0.282 0.352 0.19 0.294 0.314 

0.24 0.316 0.386 0.24 0.327 0.350 

0.29 0.349 0.416 0.29 0.363 0.382 

0.34 0.382 0.449 0.34 0.399 0.418 

0.39 0.416 0.484 0.39 0.436 0.454 

        

ENIGH84-EMOVI06 ENIGH89-EMOVI11 

𝜌 True DLLM Copula 𝜌 True DLLM Copula 

0.05 N/A 0.237 0.321 0.05 N/A 0.233 0.316 

0.10 0.265 0.343 0.10 0.260 0.344 

0.12 0.272 0.354 0.12 0.272 0.349 

0.15 0.295 0.372 0.15 0.287 0.363 

0.18 0.313 0.386 0.18 0.304 0.376 

0.20 0.326 0.394 0.20 0.318 0.394 

0.25 0.348 0.418 0.25 0.349 0.416 

0.30 0.383 0.446 0.30 0.383 0.440 

 

 

 

 

Notes: The rank-rank slope is the coefficient from the regression of child income rank on parent income rank. This table 

compares the true and synthetic panel estimate of the rank-rank slope for each data set for a variety of 𝜌 values including 

the actual error correlation when known and the estimated correlation for the ENIGH84-EMOVI06 (born 1966-1976) 

and ENIGH89-EMOVI11 (born 1971-1981). 

No statistically significant 

difference between true 

value and estimate 

True value lies within 

95% confidence 

interval  

of 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 estimate 

True Value lies within 

95% confidence of 𝝆𝑨𝒄𝒕𝒖𝒂𝒍 
and not statistically 

significantly different 

from estimate 


